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Abstract

The stop-signal paradigm is frequently used to study response inhibition. In

this paradigm, participants perform a two-choice responsetime task where

the primary task is occasionally interrupted by a stop-signal that prompts

participants to withhold their response. The primary goal is to estimate

the latency of the unobservable stop response (stop signal reaction time

or SSRT). Recently, Matzke, Dolan, Logan, Brown, and Wagenmakers (in

press) have developed a Bayesian parametric approach that allows for the

estimation of the entire distribution of SSRTs. The Bayesian parametric

approach assumes that SSRTs are ex-Gaussian distributed and uses Markov

chain Monte Carlo sampling to estimate the parameters of theSSRT distri-

bution. Here we present an e�cient and user-friendly software implementa-

tion of the Bayesian parametric approach |BEESTS| that can b e applied

to individual as well as hierarchical stop-signal data. BEESTS comes with

an easy-to-use graphical user interface and provides userswith summary

statistics of the posterior distribution of the parameters as well various diag-

nostic tools to assess the quality of the parameter estimates. The software

is open source and runs on Windows and OS X operating systems.In sum,

BEESTS allows experimental and clinical psychologists to estimate entire

distributions of SSRTs and hence facilitates the more rigorous analysis of

stop-signal data.

Keywords: stop-signal paradigm, stop-signal RT distribution, ex-

Gaussian distribution, hierarchical Bayesian modeling, sta tistical

software
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Introduction

Response inhibition |the ability to stop an ongoing respons e| is frequently studied

using the stop-signal paradigm. In the stop-signal paradigm (Lappin & Eriksen, 1966;

Logan & Cowan, 1984), participants perform a two-choice visual response time (RT) task,

such as responding to the color or the shape of the stimuli. This primary task is occasionally

interrupted by a stop-signal that instructs participants n ot to respond on that trial. The

goal is to estimate the latency of the unobservable stop response (stop-signal RT; SSRT).

Based on the independent horse-race model (Logan, 1981; Logan & Cowan, 1984),

various methods are available to estimate SSRTs (e.g., Logan, 1994; Verbruggen & Logan,

2009; Verbruggen, Chambers, & Logan, 2009). Over the past decades, the horse-race model

has been extensively used to estimate stopping latencies and compare the e�ciency of

response inhibition between di�erent age groups (e.g., Kramer, Humphrey, Larish, Logan,

& Strayer, 1994; Ridderinkhof, Band, & Logan, 1999; Schachar & Logan, 1990; Williams,

Ponesse, Schachar, Logan, & Tannock, 1999) and clinical populations (Oosterlaan, Logan,

& Sergeant, 1998; Schachar & Logan, 1990; Schachar, Mota, Logan, Tannock, & Klim,

2000). Unfortunately, most standard methods to estimate SSRTs only provide a summary

measure of the latency of the stop process, such as the mean orthe median SSRT.

Several researchers have argued, however, that the adequate analysis of RT data

should not only focus on mean RT, but should consider the shape of the entire RT distri-

bution (e.g., Heathcote, Popiel, & Mewhort, 1991; Matzke & Wagenmakers, 2009). The

shape of SSRT distributions may, for example, di�er betweendi�erent clinical populations,

without necessary di�erences in mean SSRT. Ignoring the shape of SSRT distributions may

thus lead to incorrect conclusions about di�erences in response inhibition between groups.

To allow for a more thorough analysis of stop-signal data, Matzke et al. (in press)

have recently developed a Bayesian parametric approach (BPA) that enables researchers

to estimate the entire distribution of SSRTs (see Logan, VanZandt, Verbruggen, & Wa-

genmakers, 2013 for an alternative approach). The BPA assumes that SSRTs follow an

ex-Gaussian distribution and uses Bayesian parameter estimation to obtain posterior distri-
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butions for the model parameters. The Bayesian parametric approach enables researchers to

compare and evaluate di�erences in the ex-Gaussian stop parameters between experimental

and clinical groups. By doing so, the BPA has the potential to facilitate the interpretation

of stop-signal data and contribute to new insights on the nature of response inhibition.

Parameter estimation in the BPA currently relies on the popular Bayesian statistical

package WinBUGS (Bayesian inference Using Gibbs Sampling for Windows; Lunn, Jackson,

Spiegelhalter, Best, & Thomas, 2012). The practical usefulness of the BPA is, however,

severely limited by the disadvantages of the present implementation. The WinBUGS routine

is extremely time consuming and rather user-unfriendly. For instance, WinBUGS requires

several hours to produce reliable parameter estimates for asingle participant and it requires

several days to �t a hierarchical data set. It is therefore all but impossible for experimental

and clinical psychologist to take advantage of the theoretical progress o�ered by the BPA.

In order to overcome this obstacle and promote the broader application of the

Bayesian analysis of stop-signal data, we introduce a relatively fast, user-friendly soft-

ware that allows for the estimation of entire SSRT distribut ions. BEESTS (B ayesian

Ex-Gaussian Estimation of ST op-Signal RT distributions) can be applied to individual

as well as hierarchical stop-signal data and comes with an easy-to-use graphical user inter-

face. BEESTS provides users with summary statistics of the posterior distribution of the

parameters as well various diagnostic tools to assess the quality of the parameter estimates.

The outline of the paper is as follows. First, we describe theBayesian parametric ap-

proach in more detail. Second, we introduce BEESTS, presentthe installation instructions,

and describe the various analysis and output options provided by the software. Third, we

illustrate the use of BEESTS with experimental stop-signaldata. The last section concludes.

The Bayesian Parametric Approach

Rationale and Assumptions

According to the standard horse-race model (Logan, 1981; Logan & Cowan, 1984),

performance in the stop-signal paradigm can be conceptualized as a horse-race between two
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independent processes that compete against each other: a go-process that is initiated by

the primary task \go" stimulus and a stop-process that is generated by the stop-signal. As

shown in Figure 1, if the go-process �nishes before the stop-process, the primary response is

executed; if the stop-process �nishes before the go-process, the primary response is inhibited.

The shorter the time interval between the onset of the go-stimulus and the onset of the stop-

signal (i.e., stop-signal delay; SSD), the more likely participants are to inhibit their response

on the primary task (see also Matzke et al., in press).

onset go stimulus onset stop signal

SSD

internal response to stop signal

SSRT time

go RT distribution

P(respond | stop signal) P(inhibit | stop signal)

Figure 1. Graphical representation of the independent horse-race model. The success of

response inhibition is determined by the relative �nishing times of the go and the stop

process. Primary task \go" RTs that are longer than SSD+ SSRT are successfully inhibited

(i.e., white area); go RTs that are shorter than SSD + SSRT escape inhibition and result

in signal-respond RTs (i.e., gray area; see also Matzke et al., in press). Constant SSRT is

assumed.

The Bayesian parametric approach (BPA) is based on the rationale of the standard

horse-race model, but it assumes that primary task \go" RTs and SSRTs are both indepen-

dent random variables (i.e., complete horse-race model). As shown in Figure 2, the BPA

assumes that the distribution of RTs that escape inhibition (i.e., signal-respond RTs) can
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be viewed as a censored go RT distribution. The censoring point is assumed to be drawn

from the SSRT distribution and can take on a di�erent value on each stop-signal trial (e.g.,

SSD + SSRT1, SSD + SSRT2, and SSD + SSRT3). The estimation of the SSRT distribu-

tion therefore involves simultaneously estimating the parameters of the go RT distribution

and its censoring distribution (see also Matzke et al., in press).

onset go stimulus onset stop signal

SSD SSRT1

SSRT2

SSRT3

time

go RT distribution

Stop-signal RT distribution

Signal-respond RT distribution

Figure 2. Assumptions of the Bayesian parametric approach.The BPA treats the distribu-

tion of signal-respond RTs (i.e., gray area) as a go RT distribution that is censored by the

SSRT distribution. The censoring point can take on a di�erent value on each stop-signal

trial (e.g., SSD + SSRT1, SSD + SSRT2, and SSD + SSRT3). If the go RT on a given

trial is longer than SSD + SSRT, the go RT is successfully inhibited. In contrast, if the

go RT on a given trial is shorter than SSD + SSRT, the go RT cannot be inhibited and

results in a signal-respond RT. See Matzke et al. (in press) for details.

The BPA assumes that the go RTs and SSRTs are ex-Gaussian distributed (Heathcote

et al., 1991; Hockley, 1982, 1984; Matzke & Wagenmakers, 2009; Ratcli�, 1978, 1993;

Ratcli� & Murdock, 1976). The ex-Gaussian is a three-parameter distribution that is given
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by the convolution of a Gaussian and an exponential distribution. The � and � parameters

are the mean and the standard deviation of the Gaussian component, respectively, and� is

the mean of the exponential component. The� and � parameters re
ect the leading edge

and mode of the distribution, whereas� re
ects the tail of the distribution. As shown in

Figure 3, the ex-Gaussian is a positively skewed unimodal distribution that can excellently

accommodate the shape of empirical RT data. The mean and variance of the ex-Gaussian

distribution equals

E(t) = � + � (1)

and

Var(t) = � 2 + � 2; (2)

respectively. Note that the BPA does not assume that the ex-Gaussian parameters cor-

respond to speci�c cognitive processes (Matzke & Wagenmakers, 2009); the ex-Gaussian

distribution is used as a convenient descriptive model to summarize the distribution of go

RTs and SSRTs.

Bayesian Parameter Estimation and Priors

As explained in Matzke et al. (in press), the BPA simultaneously estimates the � go,

� go, and � go parameters of the go RT distribution and the � stop, � stop, and � stop param-

eters of the SSRT distribution. The BPA relies on Bayesian parameter estimation and

therefore involves specifying the prior distribution of the model parameters. BEESTS uses

slightly di�erent priors than the WinBUGS implementation o f the BPA. Note however that

Bayesian parameter estimation is insensitive to the choiceof the prior as long as su�ciently

informative data are available (e.g., Lee & Wagenmakers, inpress). The prior distribu-

tions of the model parameters for the BEESTS implementationare listed in the Appendix.

The ability of BEESTS to recover underlying true parameter values with the present prior
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Figure 3. The shape of the ex-Gaussian distribution as a function of the � , � , and �

parameters. The distributions were generated with the following parameter sets: � = 0 :5,

� = 0 :05, � = 0 :3 (Panel 1); � = 1, � = 0 :05, � = 0 :3 (Panel 2); � = 0 :5, � = 0 :2, � = 0 :3

(Panel 3); and � = 0 :5, � = 0 :05, � = 0 :8 (Panel 4).

setting has been validated in a series of simulation studies. See the supplemental materi-

als at http://dora.erbe-matzke.com/publications.html f or a summary of the results of the

parameter recoveries.

The BPA relies on Markov chain Monte Carlo sampling (MCMC; Gamerman & Lopes,

2006; Gilks, Richardson, & Spiegelhalter, 1996) to obtain posterior distributions for the

go and stop parameters. Figure 4 illustrates the basic concepts of Bayesian parameter

estimation using MCMC sampling. The bottom panel of Figure 4shows sequences of values

(i.e., MCMC chains) sampled from the posterior distribution of the � stop parameter. The

accuracy of the sampling process can be increased by runningmultiple chains, discarding the

beginning of each chain as burn-in, and by thinning the chains to decrease autocorrelation.

In the present illustration, we ran three chains, each with di�erent starting values and

retained 2; 000 iterations per chain, resulting in a total of 6; 000 samples from the posterior

distribution (see also Matzke et al., in press).

The top panel of Figure 4 shows the prior and posterior distribution of the � stop

parameter. The horizontal gray line at the bottom of the �gur e shows the prior distribution
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of � stop. The prior is updated by the incoming data to yield the posterior distribution.

The histogram and the gray density plot show the distribution of the samples drawn from

the posterior distribution of � stop collapsed over the three MCMC chains. The posterior

distribution quanti�es the uncertainty about the estimate of � stop. The central tendency of

the posterior, such as the median, is often used as a point estimate of the parameter. The

dispersion of the posterior, such as the standard deviationor the percentiles, quanti�es the

precision of the parameter estimate; the larger the dispersion, the greater the uncertainty in

the estimated parameter. For example, the horizontal line at the top of Figure 4 ranges from

the 2:5th to the 97:5th percentile of the posterior (i.e., 95% Bayesian con�dence interval),

indicating that we can be 95% con�dent that the true value of � stop lies within this range

(see also Matzke et al., in press).

Before interpreting the parameter estimates, it is crucialto ensure sure that the chains

have converged from their starting values to their stationary distributions. First, we verify

that the posterior distributions of the model parameters are unimodal. Second, we run

multiple MCMC chains and ascertain that the chains have mixed well. At convergence, the

individual MCMC chains should look like \hairy caterpillar s" and should be indistinguish-

able from one another. Lastly, we compute theR̂ (Gelman & Rubin, 1992) convergence

diagnostic measure for each model parameter.̂R compares the between-chain variability to

the within-chain variability. As a rule of thumb, R̂ should be lower than 1:1 if the chains

have properly converged. In case of convergence problems, we recommend users to increase

the number of samples, the length of the burn-in period, and the degree of thinning.

The BPA can be applied to individual as well as hierarchical stop-signal data. In

the individual analysis, the BPA assumes that participants are completely independent.

The goal is to estimate the ex-Gaussian go and stop parameters for each participant sep-

arately. In contrast, in the hierarchical analysis (e.g., Farrell & Ludwig, 2008; Gelman

& Hill, 2007; Lee, 2011; Matzke & Wagenmakers, 2009; Rouder,Lu, Speckman, Sun, &

Jiang, 2005), the BPA assumes that the participant-level goand stop parameters are drawn

from group-level distributions. The group-level distributions specify the between-subject



RELEASE THE BEESTS 9

t stop

D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100 110 120 130

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Posterior

95%

Prior

M
C

M
C

 it
er

at
io

n

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Chain 1
Chain 2
Chain 3

Figure 4. Illustration of MCMC-based Bayesian estimation for the � stop parameter with the

individual BPA. The histogram in the top panel �gure shows the posterior distribution of

� stop. The corresponding gray line indicates the �t of a nonparametric density estimator.

The horizontal black line at the top of the top panel shows the 95% Bayesian con�dence

interval. The horizontal gray line at the bottom of the top pa nel shows the prior distribution

of � stop. The solid, dashed and dotted lines in the bottom panel �gurerepresent the di�erent

sequences of values (i.e., MCMC chains) sampled from the posterior distribution of � stop

(see also Matzke et al., in press).
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variability of the participant-level parameters. The grou p-level distributions are themselves

characterized by a set of group-level parameters. The goal is to simultaneously estimate the

group-level parameters as well as the participant-level goand stop parameters. As explained

in Matzke et al. (in press), hierarchical modeling is particularly valuable in situations with

only a small number of observations per participant and moderate between-subject vari-

ability in parameter values (Gelman & Hill, 2007). In such situations, Bayesian hierarchical

modeling typically yields less variable and more accurate estimates than single-level pa-

rameter estimation (Farrell & Ludwig, 2008; Rouder et al., 2005).The advantages of the

hierarchical approach are less pronounced in situations with a large number of observations

per participant. Similarly, in settings with only a few part icipants |a typical scenario in

psychophysics experiments| the group-level parameters cannot be estimated precisely, a

problem that diminishes the bene�ts of hierarchical modeling. In these cases, the individual

approach may perform similarly well as the hierarchical approach.

Releasing the BEESTS

BEESTS is a cross-platform open-source software for the estimation of SSRT distri-

butions with the Bayesian parametric approach (Matzke et al., in press). BEESTS relies on

Python for parameter estimation and on R (R Core Team, 2012) for the post-processing of

the posterior distribution of the model parameters. Speci�cally, BEESTS uses the Python-

based toolboxes kabuki (Wiecki, Sofer, & Frank, 2013) and PyMC (Patil, Huard, & Fonnes-

beck, 2010) to construct the model and to generate samples from the posterior distribution

of the model parameters using Metropolis-within-Gibbs sampling (Tierney, 1994), respec-

tively. For computational e�ciency, the likelihood functi ons are coded in Cython (Behnel

et al., 2011). Once the model parameters are estimated, BEESTS relies on R to compute

summary statistics for the posterior distribution of the model parameters and to assess the

quality of the parameter estimates. As shown in Figure 5, BEESTS is equipped with an

easy-to-use graphical user interface (GUI).
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Installation

BEESTS is a stand-alone and open source software released under the A�ero Gen-

eral Public License. BEESTS runs on Windows (Windows XP and Windows 7) and

OS X (Mountain Lion) operating systems. The software is freely available at http://

dora.erbe-matzke.com/software.html . To install BEESTS on Windows, download

BEESTS-1.2.zip and unpack the zip �le at any desired location on your computer. Start the

GUI by clicking on BEESTS.exe. To install BEESTS on OS X, download BEESTS-1.2.dmg,

double-click the �le, and install it on your computer.

Loading Data

The top panels of Figure 6 show the required data format for the analysis.

Data �les should be saved as csv (i.e., comma-separated values) �les. For the in-

dividual analysis, the �rst row of the data �le must contain t he column names

"ss_presented","inhibited","ssd", and "rt". The remaining rows contain the data

for each go and stop-signal trial. For the hierarchical analysis, the �rst row of the data �le

must additionally contain the column name "subj_idx". See Table 1 for instructions on

response coding and theexamples folder in BEESTS for examples of the data format.

To load the data �le, click on Openin the File menu and follow the instructions.

Based on the data format, BEESTS automatically infers whether an individual or hierar-

chical analysis is appropriate: data �les without the "subj_idx" column are analyzed with

the individual BPA, whereas data �les with the "subj_idx" column are analyzed with the

hierarchical BPA.

Analysis

Once the data are loaded, users can specify the details of theMCMC sampling, the

required output, and the preferred number of CPU cores used by BEESTS.
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Table 1: Response coding for the hierarchical BEESTS analysis

"subj_idx" "ss_presented" "inhibited" "ssd" "rt"
1 0 -999 -999 656
1 1 0 300 469
1 1 1 300 -999

Note. The "subj_idx" column contains the participant number. The "ss_presented" column contains the

trial type, where go trials are coded with 0 and stop-signal tr ials are coded with 1. The "inhibited" column

contains the inhibition data, where signal-respond trials are coded with 0 (i.e., unsuccessful inhibition),

signal-inhibit trials are coded with 1 (i.e., successful in hibition), and go trials are coded with -999. The

"ssd" column contains the stop-signal delay in ms., where go trials are coded with -999. The "rt" column

contains the go RT for go trials and the signal-respond RT for signal-respond trials in ms., where signal-

inhibit trials are coded with -999.

Sampling

BEESTS allows users to specify the following aspects of the sampling run. Typical

values of the input arguments are shown in Figure 5.

Number of chains. Use the Number of chains option to specify the number of

MCMC chains, i.e., sequences of values sampled from the posterior distribution of the pa-

rameters. The start values are automatically set to the maximum a posteriori probability

(MAP) estimates of the parameters.

Samples. Use theSamplesoption to specify the total number of MCMC samples per

chain.

Burn-in . Use theBurn-in option to specify the number of burn-in samples to discard

at the beginning of each chain.

Thinning . Use the Thinning option to specify the degree of thinning within each

chain. For instance, a thinning factor of 12 means that only every 12th MCMC sample will

be retained.
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Output

All output will be saved in the directory where the data �le is located. BEESTS

automatically saves the posterior samples from each chain to a separate csv �le (e.g.,

name.datafile_parameters1.csv,name.datafile_paramet ers2.csv, etc.). If multiple

chains are run, BEESTS automatically displays theR̂ statistic for each model parameter

(see Figure 5).

As shown in Figure 5, BEESTS allows users to request the following additional output.

If Estimates for is set to All in a hierarchical analysis, BEESTS will provide the selected

output options (i.e., summary statistics, density plots of the posterior distributions, and

MCMC trace plots) for the group-level parameters and for each participant separately. If

Estimates for is set to Only-group , BEESTS will provide the selected output options

only for the group-level parameters.

Summary statistics. Use the Summary statistics option to obtain a csv �le with

the summary statistics (i.e., mean, standard deviation, and quantiles) of the posterior dis-

tribution of the model parameters and of the corresponding mean and standard deviation

of the go and SSRT distribution (see Equation 1 and Equation 2).

Posterior distributions. Use the Posterior distributions option to obtain a pdf

�le with the density plots of the posterior and the prior dist ribution of the model parameters.

MCMC chains. Use the MCMC chainsoption to obtain a pdf �le with trace plots for

the MCMC chains of the model parameters.

Deviance. Use the Deviance option to obtain the de-

viance values from each chain in a separate csv �le (e.g.,

name.datafile_deviance1.csv,name.datafile_deviance2 .csv, etc.). The deviance val-

ues may be used to compute the Deviance Information Criterion (DIC, e.g., Spiegelhalter,

Best, Carlin, & van der Linde, 2002) measure of model selection.
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Goodness-of-�t. Use the Goodness-of-fit option to assess the absolute goodness-

of-�t of the model using posterior predictive model checks. As explained in Matzke et al.

(in press), the adequacy of the model can be assessed by generating predicted data using

the posterior distributions of the parameters. If the model adequately describes the data,

the predictions based on the model parameters should closely approximate the observed

data. The model checks can be formalized by computing posterior predictive p values (e.g.,

Gelman & Hill, 2007; Gelman, Meng, & Stern, 1996, but see Bayarri & Berger, 1998).

Extreme p values close to 0 or 1 indicate that the BPA does not describe the observed data

adequately.

For each individual participant, BEESTS uses the median of the observed and pre-

dicted signal-respond RTs as test statistic. ThePredictions option can be used to specify

the number of predicted data sets. BEESTS then randomly samples the speci�ed number

of parameter vectors from the joint posterior of the individual go and stop parameters.

Next, BEESTS generates the speci�ed number of predicted stop-signal data sets for each

SSD using the corresponding number of stop-signal trials and the chosen parameter vec-

tors. For each predicted data set, BEESTS then computes the median signal-respond RT.

Lastly, for each SSD, BEESTS computes the one-sided posterior predictive p value given

by the fraction of times that the predicted median signal-respond RT is greater than the

observed median signal-respond RT. Corresponding two-sided p values can be computed as

2 � min(p;1 � p). Note however that two-sided p values are well de�ned only when the

test statistic has a symmetric distribution. Note also that BEESTS assesses model �t on

all SSDs that contain at least one observed signal{respond RT. In order to obtain stable

median signal-respond RTs, however, we advise users to interpret the results only on SSDs

with a reasonable number of observed signal-respond RTs.

The output of the posterior predictive model checks consists of (1) a csv �le listing

for each SSD the number of observed signal-respond RTs, the observed median signal-

respond RT, the average of the predicted median signal-respond RTs, and the one-sided

and two-sided posterior predictive p value and (2) a pdf �le with a graphical summary of
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the model checks using violin plots. Violin plots (e.g., Hintze & Nelson, 1998) combine

information available from density plots with information about summary statistics in the

form of box plots. Note that irrespective of the type of analysis (individual or hierarchical),

the goodness-of-�t of the model is assessed on a participantlevel using the parameter values

of the individual participants.

Options: Max CPU Cores to Use

Use the Max CPU cores to useoption to specify the number of CPU cores to use

during the sampling process. If multiple MCMC chains are requested, BEESTS can run

the chains in parallel by allocating each chain to a di�erent CPU core in order to increase

speed. The default number of CPU cores used by BEESTS is the number of cores available

on the computer at hand minus one.

Running the Analysis

Once the details of the sampling process and the required output are speci�ed, start

the analysis by clicking onRun. As shown in Figure 5, BEESTS automatically displays the

progress of the sampling. If multiple MCMC chains are run in parallel, BEESTS displays

the progress of only one of the MCMC chains (i.e., the main process). The analysis can be

stopped by \killing" the (parallel) processes in the Task Manager. Use theClear command

to clear the working space.

Empirical Data Examples: Individual and Hierarchical Analysis

In this section, we illustrate the use of BEESTS with the stop-signal data of 20

participants from the 40% stop-signal condition of the �rst experiment reported in Bissett

and Logan (2011). The data set featured a relatively large number of 720 go trials and 480

stop-signal trials per participant. See Matzke et al. (in press) for the details on the data pre-

processing and the model �tting. For all of the participants , the BEESTS implementation

yielded parameter estimates that are highly similar to the ones obtained from the WinBUGS

routine. For a comparison of the parameter estimates from the BEESTS and the WinBUGS
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implementation, the reader is referred to the supplementalmaterials and to the empirical

data examples in Matzke et al. (in press).

Due to relatively high autocorrelations between the parameters, we ran long chains,

discarded the beginning of the chains as burn-in and thinnedeach chain. The results

reported below are based on 6,000 retained samples, usingNumber of chains = 3, Samples

= 36000, Burn-in = 12000 , and Thinning = 12 .

Individual Analysis

In this section, we present the results of �tting the data of Participant 1 with the

individual BPA. See the examples folder for the data set. Using three CPU cores, the

sampling took approximately 23 minutes with BEESTS. The same analysis took about 15

hours with WinBUGS. The top left panel of Figure 6 shows the required data format for the

individual analysis. Figure 7 shows the posterior and priordistributions (left panel; option

Posterior distributions ) and the MCMC chains (right panel; option MCMC chains) for

the six model parameters. The prior distributions are adequately updated; the posteriors

are substantially narrower than the priors. The posterior distributions and the three MCMC

chains do not show signs of convergence problems. All̂R values were lower than 1.05. The

middle left panel of Figure 6 shows the summary statistics ofthe posterior distribution of the

model parameters (optionSummary statistic ). The posterior distributions are estimated

well as evidenced by the relatively small posterior standard deviations. The go parameters

are generally estimated more precisely than the stop parameters because the go parameters

are estimated based on the go RTs as well as the signal-respond RTs and are therefore

better constrained by the data.

The bottom left panel of Figure 6 shows the summary of the posterior predictive

model checks (option Goodness-of-fit ) using 1000 samples from the joint posterior of

the model parameters (Samples = 1000). As mentioned above, we advise users to assess

model �t only on SSDs with a reasonable number of observed signal-respond RTs. For

instance, we assessed goodness-of-�t only on SSDs with at least 10 observed signal-respond
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RTs. The one-sided p values on these �ve SSDs (i.e., 200, 250,300, 350, and 400 ms) are

far from 0 or 1 and the two-sided p values are all above 0.05. The left panel of Figure 8

shows the corresponding graphical summary for the model checks. For the selected SSDs,

the observed median signal-respond RTs (i.e., black triangles) are well within the 2:5th and

97:5th percentile of the predicted median signal-respond RTs (seegray violin plots), and are

adequately approximated by the median of the predicted median signal-respond RTs (i.e.,

white circles). The results of the posterior predictive model checks indicated thus that the

BEESTS analysis appropriately accounted for the observed data.

Hierarchical analysis

As explained above, the hierarchical approach has the potential to provide accurate

parameter estimates with relatively few observations per participant. To illustrate the ben-

e�ts of the hierarchical approach over the individual BPA wi th scarce data, this section

presents the results of �tting a subsample of the observations from the Bissett and Logan

(2011) data set with the hierarchical as well as the individual BPA. For each of the 20 par-

ticipants, we �t a randomly selected 90 go RTs, 30 signal-respond RTs, and 30 successful

inhibitions with the hierarchical BPA. We then compared the results from the hierarchical

analysis to the results from �tting the same subsample of data with the individual BPA. Us-

ing three CPU cores, the hierarchical analysis took approximately 3.5 hours with BEESTS.

The same analysis took about 100 hours with WinBUGS.

The top right panel of Figure 6 shows the required data formatfor the hierarchical

analysis. Figure 9 shows the posterior and prior distributions (top panel) and the MCMC

chains (bottom panel) for the group-level mean and standarddeviation parameters. The

prior distribution of the group-level parameters are adequately updated; the posteriors are

substantially narrower than the priors and the chains have mixed well. The R̂ values for

all group-level and individual parameters were lower than 1.05. The middle right panel of

Figure 6 shows the summary statistics of the posterior distribution of the group-level mean

and standard deviation parameters. The posterior distributions are estimated relatively
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precisely. Note that if the Estimates for All option is selected, BEESTS also produces

output (i.e., density plots of the posteriors, MCMC trace plots, and summary statistics) for

the individual go and stop parameters for each participant separately.

The bottom right panel of Figure 6 shows the summary of the posterior predictive

model checks for Participant 1 using 1000 samples from the joint posterior of the participant-

level model parameters obtained with the hierarchical BPA.All posterior predictive p values

are well within an acceptable range. Note, however, that themedian signal-respond RTs |

observed and predicted| are based on only a few observations. The right panel of Figure 8

shows the corresponding graphical summary of the posteriorpredictive model checks. All

observed median signal-respond RTs are well within the range of the median signal-respond

RTs predicted by the joint posterior of the model parameters. Due to the scarcity of

the data, however, there is large uncertainty in the predicted median signal-respond RTs.

Compare the results of the posterior predictive model checks in the bottom two panels

of Figure 8. The violin plots in the left panel show the predicted median signal-respond

RTs from the individual analysis of the data of Participant 1 based on the full 1,200 trials.

The violin plots in the right panel show the predicted median signal-respond RTs from

the hierarchical analysis of the data of Participant 1 basedon a subsample of only 150

trials. Because the hierarchical analysis is based on substantially fewer observations than

the individual analysis of the full data set presented in theprevious section, the predicted

median signal-respond RTs in the right panel are more spreadout than the predicted median

signal-respond RTs in the left panel. Posterior predictive p values resulting from such

unstable observed and predicted median signal-respond RTsshould be interpreted with

caution.

To illustrate the bene�ts of the hierarchical approach over the individual BPA with

scarce data, we compared the parameter estimates from the hierarchical analysis with es-

timates obtained from the individual analysis of the same subsample of 150 trials. As

mentioned above, hierarchical modeling generally resultsin more accurate and less variable

estimates than single-level estimation. Figure 10 shows the posterior distribution of the
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stop parameters of Participant 1 obtained with the hierarchical and the individual BPA

using the same subsample of 150 observations. The gray density plots show the posterior

distribution of the stop parameters from the hierarchical BPA. The black density plots

show the posterior distribution of the stop parameters from the individual analysis. The

posterior distributions of the stop parameters estimated with the hierarchical approach are

less variable (i.e., smaller 95% Bayesian con�dence interval) than the posteriors estimated

with the individual BPA. Also, the posterior medians from th e hierarchical analysis are

|as expected| shrunk towards their corresponding group mea n (see also Matzke et al., in

press).

Discussion

The horse-race model presents various opportunities to estimate the latency of re-

sponse inhibition in the stop-signal paradigm. Most methods, however, only focus on de-

riving a summary measure of SSRT. Recently, Matzke et al. (inpress) have developed a

Bayesian parametric approach (BPA) that allows for the estimation of the entire distribu-

tion of stopping latencies. Hence the BPA enables researchers to compare di�erences in the

shape of SSRT distributions between experimental or clinical groups. Unfortunately, the

practical usefulness of the BPA is limited by the disadvantages of the current WinBUGS

implementation; the �tting routine is extremely slow and ra ther user-unfriendly.

The goal of the present paper was therefore to promote the widespread application

of the Bayesian analysis of stop-signal data by introducingBEESTS, a relatively fast and

user-friendly software implementation of the BPA. BEESTS relies on Python for parameter

estimation and on R for the post-processing of the posteriordistribution of the model

parameters. For computational speed, the likelihood functions are coded in Cython. The

software provides users with a range of output options, suchas summary statistics of the

posterior distribution of the parameters and various diagnostic tools to assess the quality

of the estimates. Importantly, BEESTS is equipped with an easy-to-use graphical user

interface.
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BEESTS can be applied to individual as well as hierarchical stop-signal data. The

advantage of the individual approach lies in its simplicity. The advantage of the hierarchical

approach lies in its potential to provide accurate parameter estimates with relatively few

observations per participant. The bene�ts of the hierarchical approach are less pronounced

in situations with a large number of observations per participant and/or a small number of

participants. The choice between the individual and the hierarchical approach in practical

applications depends on a delicate balance between the quality of the data, the number

of participants, the number of trials per participant, and w hether users are interested in

obtaining accurate parameter estimates on the participant level or are satis�ed with in-

terpreting only the group-level parameters. Prior to data collection, users are encouraged

to generate synthetic data with varying number of trials and participants, �t the data in

BEESTS, and inspect the parameter estimates in order to assess the expected uncertainty

of the model parameters under the di�erent scenarios and modeling approaches.

BEESTS assumes that go RTs and SSRTs are ex-Gaussian distributed and relies

on Bayesian parameter estimation to obtain estimates for the go and stop parameters.

Note, however, that the BPA itself does not hinge on the particular parametric form

used to summarize the distributions, nor is it heavily in
ue nced by the exact choice of

the prior distributions. In our experience, the ex-Gaussian assumption and the corre-

sponding (group-level and hyper) prior distributions implemented in BEESTS provide

a reasonable default setting. Nevertheless, interested users may adapt the source code

(https://github.com/twiecki/stopsignal ) to accommodate alternative parametric as-

sumptions or di�erent prior settings. Also, the posterior p redictive model check imple-

mented in BEESTS using the median signal-respond RT is only one of many possible ap-

proaches to assess the goodness-of-�t of the model. Users may adapt the source code to

implement posterior predictive model checks using alternative test statistics (see Matzke et

al., in press).
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Conclusion

Here we introduced a software package |BEESTS| that allows f or the e�cient es-

timation of entire SSRT distributions using MCMC sampling. BEESTS is equipped with a

graphical user interface and provides users with a wide range of output options. BEESTS

allows researchers to rigorously address important questions about the variability of stop-

ping latencies, such as the relationship between mean SSRT and SSRT variance. Similarly,

BEESTS enables investigators to assess di�erences in the shape of go RT and SSRT distribu-

tions between clinical populations or experimental groups. BEESTS therefore facilitates the

interpretation of stop-signal data and may open fruitful new avenues for response inhibition

research.
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Figure 5. Graphical user interface for BEESTS. See text for details.
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Figure 6. BEESTS input and output. The left panels show input and output for the

individual analysis. The right panels show input and output for the hierarchical analysis.

The top panels show the required data format. The middle panels show the output of the

Summary statistic option. For the hierarchical analysis, only the group-level mean and

group-level variability (i.e., standard deviation) param eters are shown. The bottom panels

show partial output for the Goodness-of-fit option for Participant 1 in the Bissett and

Logan (2011) experiment. SRRT = signal-respond RT.
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Figure 7. Posterior (black solid lines) and prior distributions (black dotted lines; left panel)

and MCMC chains (right panel) of the model parameters for Participant 1 in the Bissett

and Logan (2011) data set obtained with the individual BPA.
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a) Individual BPA b) Hierarchical BPA

Figure 8. Results of the posterior predictive model checks for Participant 1 in the Bissett

and Logan (2011) data set with the individual (panel a) and the hierarchical (panel b) BPA.

See text for a detailed description of the posterior predictive analyses. For each SSD, the

�gures show the observed median signal-respond RT (black triangle), a density plot of the

predicted median signal-respond RTs (gray violin plot), a boxplot ranging from the 25th

to the 75th percentile of the predicted median signal-respond RTs, andthe median of the

predicted median signal-respond RTs (white circle). SRRT = signal-respond RT.
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Figure 9. Posterior distributions and MCMC chains of the group-levelmodel parameters in

the Bissett and Logan (2011) data set obtained with the hierarchical BPA. The �rst and third

rows show posterior (black solid line) and prior distributions (black dotted line) and MCMC

trace plots for the group-level mean parameters, respectively. The second and fourth rows

show posterior and prior distributions and trace plots for the group-level variability (i.e.,

group-level standard deviation) parameters, respectively.
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Figure 10. Posterior distribution of the stop parameters estimated from a subsample of the

data of Participant 1 with the individual and the hierarchical BPA. The solid black and

gray lines show the posterior distribution of the stop parameters and the corresponding

95% Bayesian con�dence intervals obtained with the individual and the hierarchical BPA,

respectively. The dashed black and gray lines show the median of the posterior distributions

obtained with the individual and the hierarchical BPA, resp ectively (see also Matzke et al.,

in press).
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Appendix

Prior distribution of the model parameters

This appendix presents the prior distributions of the model parameters in the

BEESTS implementation of the Bayesian parametric approach(BPA). The name of each

parameter as shown in the BEESTS output is in brackets.

Individual BPA

The priors for the go and stop parameters are uniform distributions, spanning a

plausible but wide range of values. BEESTS relies on slightly more di�use priors than the

WinBUGS implementation of the BPA (see Matzke et al., in press):

� go (mu go) � Uniform(0:001; 1000)

� go (sigma go) � Uniform(1; 500)

� go (tau go) � Uniform(1; 500)

� stop (mu stop) � Uniform(0:001; 600)

� stop (sigma stop) � Uniform(1; 350)

� stop (tau stop) � Uniform(1; 350):

(3)

Hierarchical BPA

Individual parameters. The hierarchical BPA assumes that the � go, � go, � go, � stop,

� stop, and � stop parameters of each participantj = 1 ; :::J come from truncated normal group-

level distributions. The group-level distributions are themselves characterized by a group

mean (� ) and a group standard deviation (� ) parameter. The WinBUGS implementation

relies on normal group-level distributions that are truncated only at the lower end, whereas

BEESTS uses normal distributions that are truncated at the lower and the upper ends:
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� goj (mu go.subj) � Normal(� � go ; � � go )[0:001; 1000]

� goj (sigma go.subj) � Normal(� � go ; � � go )[1; 500]

� goj (tau go.subj) � Normal(� � go ; � � go )[1; 500]

� stopj (mu stop.subj) � Normal(� � stop ; � � stop )[0:001; 600]

� stopj (sigma stop.subj) � Normal(� � stop ; � � stop )[1; 350]

� stopj (tau stop.subj) � Normal(� � stop ; � � stop )[1; 350]:

(4)

Group-level parameters. The priors for the group mean and group standard deviations

are uniform distributions. Note that the WinBUGS implement ation uses censored normal

priors for the group-level means and relies on slightly lessdi�use priors for the group-level

standard deviations than BEESTS:

� � go (mu go) � Uniform(0:001; 1000)

� � go (mu go var) � Uniform(0:01; 300)

� � go (sigma go) � Uniform(1; 500)

� � go (sigma go var) � Uniform(0:01; 200)

� � go (tau go) � Uniform(1; 500)

� � go (tau go var) � Uniform(0:01; 200)

� � stop (mu stop) � Uniform(0:001; 600)

� � stop (mu stop var) � Uniform(0:01; 300)

� � stop (sigma stop) � Uniform(1; 350)

� � stop (sigma stop var) � Uniform(0:01; 200)

� � stop (tau stop) � Uniform(1; 350)

� � stop (tau stop var) � Uniform(0:01; 200):

(5)


