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Abstract
The stop-signal paradigm is frequently used to study respose inhibition. In

this paradigm, participants perform a two-choice responsdime task where
the primary task is occasionally interrupted by a stop-sigral that prompts
participants to withhold their response. The primary goal is to estimate
the latency of the unobservable stop response (stop signaleaction time
or SSRT). Recently, Matzke, Dolan, Logan, Brown, and Wagennakers (in
press) have developed a Bayesian parametric approach thatllaws for the
estimation of the entire distribution of SSRTs. The Bayesian parametric
approach assumes that SSRTs are ex-Gaussian distributed druses Markov
chain Monte Carlo sampling to estimate the parameters of theSSRT distri-
bution. Here we present an e cient and user-friendly software implementa-
tion of the Bayesian parametric approach |[BEESTS| that can b e applied
to individual as well as hierarchical stop-signal data. BEESTS comes with
an easy-to-use graphical user interface and provides usetsith summary
statistics of the posterior distribution of the parameters as well various diag-
nostic tools to assess the quality of the parameter estimate The software
is open source and runs on Windows and OS X operating systemsn sum,
BEESTS allows experimental and clinical psychologists to stimate entire
distributions of SSRTs and hence facilitates the more rigoras analysis of

stop-signal data.

Keywords: stop-signal paradigm, stop-signal RT distribution, ex-
Gaussian distribution, hierarchical Bayesian modeling, sta tistical

software
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Introduction

Response inhibition |the ability to stop an ongoing respons e| is frequently studied
using the stop-signal paradigm. In the stop-signal paradign (Lappin & Eriksen, 1966;
Logan & Cowan, 1984), participants perform a two-choice visial response time (RT) task,
such as responding to the color or the shape of the stimuli. Tis primary task is occasionally
interrupted by a stop-signal that instructs participants n ot to respond on that trial. The
goal is to estimate the latency of the unobservable stop resmse (stop-signal RT; SSRT).

Based on the independent horse-race model (Logan, 1981; Lag & Cowan, 1984),
various methods are available to estimate SSRTs (e.g., Logg 1994; Verbruggen & Logan,
2009; Verbruggen, Chambers, & Logan, 2009). Over the past dades, the horse-race model
has been extensively used to estimate stopping latencies dncompare the e ciency of
response inhibition between di erent age groups (e.g., Kraner, Humphrey, Larish, Logan,
& Strayer, 1994; Ridderinkhof, Band, & Logan, 1999; Schacha& Logan, 1990; Williams,
Ponesse, Schachar, Logan, & Tannock, 1999) and clinical pofations (Oosterlaan, Logan,
& Sergeant, 1998; Schachar & Logan, 1990; Schachar, Mota, gan, Tannock, & Klim,
2000). Unfortunately, most standard methods to estimate S&Ts only provide a summary
measure of the latency of the stop process, such as the mean thie median SSRT.

Several researchers have argued, however, that the adegeatnalysis of RT data
should not only focus on mean RT, but should consider the shap of the entire RT distri-
bution (e.g., Heathcote, Popiel, & Mewhort, 1991; Matzke & Wagenmakers, 2009). The
shape of SSRT distributions may, for example, di er betweendi erent clinical populations,
without necessary di erences in mean SSRT. Ignoring the shpe of SSRT distributions may
thus lead to incorrect conclusions about di erences in respnse inhibition between groups.

To allow for a more thorough analysis of stop-signal data, M#&zke et al. (in press)
have recently developed a Bayesian parametric approach (B® that enables researchers
to estimate the entire distribution of SSRTs (see Logan, VanZandt, Verbruggen, & Wa-
genmakers, 2013 for an alternative approach). The BPA assups that SSRTs follow an

ex-Gaussian distribution and uses Bayesian parameter estiation to obtain posterior distri-
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butions for the model parameters. The Bayesian parametric pproach enables researchers to
compare and evaluate di erences in the ex-Gaussian stop pameters between experimental
and clinical groups. By doing so, the BPA has the potential tofacilitate the interpretation
of stop-signal data and contribute to new insights on the natire of response inhibition.
Parameter estimation in the BPA currently relies on the popular Bayesian statistical
package WIinBUGS (Bayesian inference Using Gibbs Samplingf Windows; Lunn, Jackson,
Spiegelhalter, Best, & Thomas, 2012). The practical usefuless of the BPA is, however,
severely limited by the disadvantages of the present implemntation. The WinBUGS routine
is extremely time consuming and rather user-unfriendly. Fo instance, WinBUGS requires
several hours to produce reliable parameter estimates for single participant and it requires
several days to t a hierarchical data set. It is therefore al but impossible for experimental
and clinical psychologist to take advantage of the theorettal progress o ered by the BPA.
In order to overcome this obstacle and promote the broader aplication of the
Bayesian analysis of stop-signal data, we introduce a relately fast, user-friendly soft-
ware that allows for the estimation of entire SSRT distributions. BEESTS (Bayesian
Ex-Gaussian Estimation of ST op-Signal RT distributions) can be applied to individual
as well as hierarchical stop-signal data and comes with an sg-to-use graphical user inter-
face. BEESTS provides users with summary statistics of the psterior distribution of the
parameters as well various diagnostic tools to assess the glity of the parameter estimates.
The outline of the paper is as follows. First, we describe théBayesian parametric ap-
proach in more detail. Second, we introduce BEESTS, preserthe installation instructions,
and describe the various analysis and output options proviéd by the software. Third, we

illustrate the use of BEESTS with experimental stop-signaldata. The last section concludes.

The Bayesian Parametric Approach
Rationale and Assumptions

According to the standard horse-race model (Logan, 1981; Lgan & Cowan, 1984),

performance in the stop-signal paradigm can be conceptuaed as a horse-race between two
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independent processes that compete against each other: a-goocess that is initiated by
the primary task \go" stimulus and a stop-process that is gererated by the stop-signal. As
shown in Figure 1, if the go-process nishes before the stoprocess, the primary response is
executed; if the stop-process nishes before the go-procgsthe primary response is inhibited.
The shorter the time interval between the onset of the go-stinulus and the onset of the stop-
signal (i.e., stop-signal delay; SSD), the more likely paricipants are to inhibit their response

on the primary task (see also Matzke et al., in press).

P(respond | stop signal) P(inhibit | stop signal)

< go RT distribution

1 ] i

—
T SsD T SSRT T time

onset go stimulus onset stop signal internal response to stop signal

Figure 1. Graphical representation of the independent horse-race mitel. The success of
response inhibition is determined by the relative nishing times of the go and the stop
process. Primary task \go" RTs that are longer than SSD+ SSRT are successfully inhibited
(i.e., white area); go RTs that are shorter than SSD + SSRT escape inhibition and result
in signal-respond RTs (i.e., gray area; see also Matzke et alin press). Constant SSRT is

assumed.

The Bayesian parametric approach (BPA) is based on the ratimale of the standard
horse-race model, but it assumes that primary task \go" RTs end SSRTs are both indepen-
dent random variables (i.e., complete horse-race model). & shown in Figure 2, the BPA

assumes that the distribution of RTs that escape inhibition (i.e., signal-respond RTs) can
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be viewed as a censored go RT distribution. The censoring poi is assumed to be drawn
from the SSRT distribution and can take on a di erent value on each stop-signal trial (e.g.,
SSD+ SSRT;, SSD+ SSRT,, and SSD + SSRT3). The estimation of the SSRT distribu-
tion therefore involves simultaneously estimating the paameters of the go RT distribution

and its censoring distribution (see also Matzke et al., in pess).

Signal-respond RT distribution —> go RT distribution

SSD SSRT.\ D time
SSRT, \ E

SSRT;

. ) Stop-signal RT distribution
onset go stimulus onset stop signal

Figure 2. Assumptions of the Bayesian parametric approachThe BPA treats the distribu-

tion of signal-respond RTs (i.e., gray area) as a go RT distthution that is censored by the
SSRT distribution. The censoring point can take on a di erent value on each stop-signal
trial (e.g., SSD + SSRT;, SSD + SSRT,, and SSD + SSRT;3). If the go RT on a given
trial is longer than SSD + SSRT, the go RT is successfully inhibited. In contrast, if the
go RT on a given trial is shorter than SSD + SSRT, the go RT cannot be inhibited and

results in a signal-respond RT. See Matzke et al. (in press)or details.

The BPA assumes that the go RTs and SSRTs are ex-Gaussian digbuted (Heathcote
et al., 1991; Hockley, 1982, 1984; Matzke & Wagenmakers, 290 Ratcli, 1978, 1993;

Ratcli & Murdock, 1976). The ex-Gaussian is a three-paramder distribution that is given
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by the convolution of a Gaussian and an exponential distribtion. The and parameters
are the mean and the standard deviation of the Gaussian compwnt, respectively, and is
the mean of the exponential component. The and parameters re ect the leading edge
and mode of the distribution, whereas re ects the tail of the distribution. As shown in
Figure 3, the ex-Gaussian is a positively skewed unimodal dtribution that can excellently
accommodate the shape of empirical RT data. The mean and vaaince of the ex-Gaussian

distribution equals

E@)= + 1)

and

Var(t)= 2+ 2 (2)

respectively. Note that the BPA does not assume that the ex-@ussian parameters cor-
respond to speci c cognitive processes (Matzke & Wagenmaks, 2009); the ex-Gaussian
distribution is used as a convenient descriptive model to smmarize the distribution of go

RTs and SSRTs.

Bayesian Parameter Estimation and Priors

As explained in Matzke et al. (in press), the BPA simultaneoudy estimates the g,
go» and go parameters of the go RT distribution and the stp, stop, and stop Param-
eters of the SSRT distribution. The BPA relies on Bayesian paameter estimation and
therefore involves specifying the prior distribution of the model parameters. BEESTS uses
slightly di erent priors than the WinBUGS implementation o f the BPA. Note however that
Bayesian parameter estimation is insensitive to the choicef the prior as long as su ciently
informative data are available (e.g., Lee & Wagenmakers, inpress). The prior distribu-
tions of the model parameters for the BEESTS implementationare listed in the Appendix.

The ability of BEESTS to recover underlying true parameter values with the present prior
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Default Parameter Set Increasing m Increasing s Increasing t
f(t) f(t) o[ N f(t) k
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Figure 3. The shape of the ex-Gaussian distribution as a function of &8 , , and
parameters. The distributions were generated with the following parameer sets: = 0:5,

=0:05, =0:3(Panell); =1, =0:05 =0:3(Panel2); =05 =0:2, =0:3
(Panel 3); and =0:5, =0:05 =0:8 (Panel 4).

setting has been validated in a series of simulation studiesSee the supplemental materi-
als at http://dora.erbe-matzke.com/publications.html f or a summary of the results of the

parameter recoveries.

The BPA relies on Markov chain Monte Carlo sampling (MCMC; Gamerman & Lopes,
2006; Gilks, Richardson, & Spiegelhalter, 1996) to obtain psterior distributions for the
go and stop parameters. Figure 4 illustrates the basic congds of Bayesian parameter
estimation using MCMC sampling. The bottom panel of Figure 4 shows sequences of values
(i.e., MCMC chains) sampled from the posterior distribution of the sop parameter. The
accuracy of the sampling process can be increased by runnimgultiple chains, discarding the
beginning of each chain as burn-in, and by thinning the chais to decrease autocorrelation.
In the present illustration, we ran three chains, each with d erent starting values and
retained 2; 000 iterations per chain, resulting in a total of 6,000 samples from the posterior

distribution (see also Matzke et al., in press).

The top panel of Figure 4 shows the prior and posterior distrbution of the sp

parameter. The horizontal gray line at the bottom of the gur e shows the prior distribution
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of stop. The prior is updated by the incoming data to yield the posterior distribution.
The histogram and the gray density plot show the distribution of the samples drawn from
the posterior distribution of p collapsed over the three MCMC chains. The posterior
distribution quanti es the uncertainty about the estimate of ¢op. The central tendency of
the posterior, such as the median, is often used as a point dstate of the parameter. The
dispersion of the posterior, such as the standard deviatioror the percentiles, quanti es the
precision of the parameter estimate; the larger the dispelisn, the greater the uncertainty in
the estimated parameter. For example, the horizontal line &the top of Figure 4 ranges from
the 2:5M to the 97:5M percentile of the posterior (i.e., 95% Bayesian con denceriterval),
indicating that we can be 95% con dent that the true value of gqp lies within this range

(see also Matzke et al., in press).

Before interpreting the parameter estimates, it is crucialto ensure sure that the chains
have converged from their starting values to their stationay distributions. First, we verify
that the posterior distributions of the model parameters are unimodal. Second, we run
multiple MCMC chains and ascertain that the chains have mixed well. At convergence, the
individual MCMC chains should look like \hairy caterpillar s" and should be indistinguish-
able from one another. Lastly, we compute theR (Gelman & Rubin, 1992) convergence
diagnostic measure for each model parameterR compares the between-chain variability to
the within-chain variability. As a rule of thumb, R should be lower than 11 if the chains
have properly converged. In case of convergence problemsewecommend users to increase

the number of samples, the length of the burn-in period, and he degree of thinning.

The BPA can be applied to individual as well as hierarchical $op-signal data. In
the individual analysis, the BPA assumes that participants are completely independent.
The goal is to estimate the ex-Gaussian go and stop parameterfor each participant sep-
arately. In contrast, in the hierarchical analysis (e.g., Frrell & Ludwig, 2008; Gelman
& Hill, 2007; Lee, 2011; Matzke & Wagenmakers, 2009; Rouden.u, Speckman, Sun, &
Jiang, 2005), the BPA assumes that the participant-level goand stop parameters are drawn

from group-level distributions. The group-level distributions specify the between-subject
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Figure 4. lllustration of MCMC-based Bayesian estimation for the sop parameter with the
individual BPA. The histogram in the top panel gure shows the posterior distiibution of
stop- The corresponding gray line indicates the t of a nonparameric density estimator.
The horizontal black line at the top of the top panel shows the 95% Bayesian con dence
interval. The horizontal gray line at the bottom of the top pa nel shows the prior distribution
of stp. The solid, dashed and dotted lines in the bottom panel gurerepresent the di erent
sequences of values (i.e., MCMC chains) sampled from the piesior distribution of  gtop

(see also Matzke et al., in press).
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variability of the participant-level parameters. The grou p-level distributions are themselves
characterized by a set of group-level parameters. The goasito simultaneously estimate the
group-level parameters as well as the participant-level gand stop parameters. As explained
in Matzke et al. (in press), hierarchical modeling is particularly valuable in situations with

only a small number of observations per participant and modeate between-subject vari-
ability in parameter values (Gelman & Hill, 2007). In such situations, Bayesian hierarchical
modeling typically yields less variable and more accurate €imates than single-level pa-
rameter estimation (Farrell & Ludwig, 2008; Rouder et al., 2005).The advantages of the
hierarchical approach are less pronounced in situations wh a large number of observations
per participant. Similarly, in settings with only a few part icipants |a typical scenario in

psychophysics experiments| the group-level parameters cainot be estimated precisely, a
problem that diminishes the bene ts of hierarchical modeling. In these cases, the individual

approach may perform similarly well as the hierarchical appoach.

Releasing the BEESTS

BEESTS is a cross-platform open-source software for the dstation of SSRT distri-
butions with the Bayesian parametric approach (Matzke et al, in press). BEESTS relies on
Python for parameter estimation and on R (R Core Team, 2012) ér the post-processing of
the posterior distribution of the model parameters. Specically, BEESTS uses the Python-
based toolboxes kabuki (Wiecki, Sofer, & Frank, 2013) and PMC (Patil, Huard, & Fonnes-
beck, 2010) to construct the model and to generate samplesdm the posterior distribution
of the model parameters using Metropolis-within-Gibbs sanmpling (Tierney, 1994), respec-
tively. For computational e ciency, the likelihood functi ons are coded in Cython (Behnel
et al., 2011). Once the model parameters are estimated, BEESS relies on R to compute
summary statistics for the posterior distribution of the model parameters and to assess the
quality of the parameter estimates. As shown in Figure 5, BEESTS is equipped with an

easy-to-use graphical user interface (GUI).
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Installation

BEESTS is a stand-alone and open source software releasedder the A ero Gen-
eral Public License. BEESTS runs on Windows (Windows XP and Wndows 7) and
OS X (Mountain Lion) operating systems. The software is fredy available at http://
dora.erbe-matzke.com/software.html . To install BEESTS on Windows, download
BEESTS-1.2.zip and unpack the zip le at any desired location on your compute. Start the
GUI by clicking on BEESTS.exe To install BEESTS on OS X, download BEESTS-1.2.dmg

double-click the le, and install it on your computer.

Loading Data

The top panels of Figure 6 show the required data format for thke analysis.
Data les should be saved as csv (i.e., comma-separated vads) les. For the in-
dividual analysis, the rst row of the data le must contain t he column names
"ss_presented","inhibited","ssd", and "rt".  The remaining rows contain the data
for each go and stop-signal trial. For the hierarchical anaysis, the rst row of the data le
must additionally contain the column name "subj_idx".  See Table 1 for instructions on
response coding and theexamples folder in BEESTS for examples of the data format.

To load the data le, click on Openin the File menu and follow the instructions.
Based on the data format, BEESTS automatically infers whetter an individual or hierar-
chical analysis is appropriate: data les without the "subj_idx" column are analyzed with
the individual BPA, whereas data les with the "subj_idx" column are analyzed with the

hierarchical BPA.

Analysis

Once the data are loaded, users can specify the details of tHdCMC sampling, the

required output, and the preferred number of CPU cores used 9 BEESTS.
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Table 1: Response coding for the hierarchical BEESTS analysis

"subj_idx" "ss_presented" ‘“inhibited" “"ssd" "rt"
1 0 -999 -999 656
1 1 0 300 469
1 1 1 300 -999

Note. The "subj_idx" column contains the participant number. The "ss_presented" column contains the
trial type, where go trials are coded with 0 and stop-signal tr ials are coded with 1. The "inhibited"  column
contains the inhibition data, where signal-respond trials are coded with O (i.e., unsuccessful inhibition),
signal-inhibit trials are coded with 1 (i.e., successful in hibition), and go trials are coded with -999. The
"ssd" column contains the stop-signal delay in ms., where go trials are coded with -999. The"rt" column
contains the go RT for go trials and the signal-respond RT for signal-respond trials in ms., where signal-

inhibit trials are coded with -999.
Sampling

BEESTS allows users to specify the following aspects of theaspling run. Typical

values of the input arguments are shown in Figure 5.

Number of chains Use the Number of chains option to specify the number of
MCMC chains, i.e., sequences of values sampled from the pastor distribution of the pa-
rameters. The start values are automatically set to the maxmum a posteriori probability

(MAP) estimates of the parameters.

Samples Use the Samplesoption to specify the total number of MCMC samples per

chain.

Burn-in . Use theBurn-in option to specify the number of burn-in samples to discard

at the beginning of each chain.

Thinning. Use the Thinning option to specify the degree of thinning within each
chain. For instance, a thinning factor of 12 means that only eery 12" MCMC sample will

be retained.
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Output

All output will be saved in the directory where the data le is located. BEESTS
automatically saves the posterior samples from each chainot a separate csv le (e.qg.,
name.datafile_parametersl.csv,name.datafile_paramet ers2.csv, etc.). If multiple
chains are run, BEESTS automatically displays theR statistic for each model parameter
(see Figure 5).

As shown in Figure 5, BEESTS allows users to request the follging additional output.
If Estimates for is settoAll in a hierarchical analysis, BEESTS will provide the selectd
output options (i.e., summary statistics, density plots of the posterior distributions, and
MCMC trace plots) for the group-level parameters and for each participant separately. If
Estimates for is set to Only-group , BEESTS will provide the selected output options

only for the group-level parameters.

Summary statistics Use the Summary statistics option to obtain a csv le with
the summary statistics (i.e., mean, standard deviation, ard quantiles) of the posterior dis-
tribution of the model parameters and of the corresponding nean and standard deviation

of the go and SSRT distribution (see Equation 1 and Equation 2.

Posterior distributions. Use the Posterior distributions option to obtain a pdf

le with the density plots of the posterior and the prior dist ribution of the model parameters.

MCMC chains. Use the MCMC chainsption to obtain a pdf le with trace plots for

the MCMC chains of the model parameters.

Deviance Use the Deviance option to obtain the de-
viance values  from each chain in a  separate csv le (e.g.,
name.datafile_deviancel.csv,name.datafile_deviance2 .csv, etc.). The deviance val-

ues may be used to compute the Deviance Information Criteria (DIC, e.g., Spiegelhalter,

Best, Carlin, & van der Linde, 2002) measure of model seleain.
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Goodness-of-t. Use the Goodness-of-fit  option to assess the absolute goodness-
of- t of the model using posterior predictive model checks. As explained in Matzke et al.
(in press), the adequacy of the model can be assessed by geatérg predicted data using
the posterior distributions of the parameters. If the model adequately describes the data,
the predictions based on the model parameters should closelapproximate the observed
data. The model checks can be formalized by computing post@r predictive p values (e.g.,
Gelman & Hill, 2007; Gelman, Meng, & Stern, 1996, but see Bayai & Berger, 1998).
Extreme p values close to 0 or 1 indicate that the BPA does not describehte observed data

adequately.

For each individual participant, BEESTS uses the median of he observed and pre-
dicted signal-respond RTs as test statistic. ThePredictions option can be used to specify
the number of predicted data sets. BEESTS then randomly samfes the speci ed number
of parameter vectors from the joint posterior of the individual go and stop parameters.
Next, BEESTS generates the speci ed number of predicted stp-signal data sets for each
SSD using the corresponding number of stop-signal trials ah the chosen parameter vec-
tors. For each predicted data set, BEESTS then computes the radian signal-respond RT.
Lastly, for each SSD, BEESTS computes the one-sided posteni predictive p value given
by the fraction of times that the predicted median signal-respond RT is greater than the
observed median signal-respond RT. Corresponding two-sétl p values can be computed as
2 min(p;1 p). Note however that two-sided p values are well de ned only when the
test statistic has a symmetric distribution. Note also that BEESTS assesses model t on
all SSDs that contain at least one observed signal{respond R In order to obtain stable
median signal-respond RTs, however, we advise users to im@ret the results only on SSDs

with a reasonable number of observed signal-respond RTs.

The output of the posterior predictive model checks consist of (1) a csv le listing
for each SSD the number of observed signal-respond RTs, thebserved median signal-
respond RT, the average of the predicted median signal-regmd RTs, and the one-sided

and two-sided posterior predictive p value and (2) a pdf le with a graphical summary of
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the model checks using violin plots. Violin plots (e.g., Hirtze & Nelson, 1998) combine
information available from density plots with information about summary statistics in the
form of box plots. Note that irrespective of the type of analysis (individual or hierarchical),
the goodness-of- t of the model is assessed on a participamevel using the parameter values

of the individual participants.

Options: Max CPU Cores to Use

Use the Max CPU cores to useoption to specify the number of CPU cores to use
during the sampling process. If multiple MCMC chains are reqested, BEESTS can run
the chains in parallel by allocating each chain to a di erent CPU core in order to increase
speed. The default number of CPU cores used by BEESTS is the mober of cores available

on the computer at hand minus one.

Running the Analysis

Once the details of the sampling process and the required oput are speci ed, start
the analysis by clicking onRun As shown in Figure 5, BEESTS automatically displays the
progress of the sampling. If multiple MCMC chains are run in parallel, BEESTS displays
the progress of only one of the MCMC chains (i.e., the main proess). The analysis can be
stopped by \killing" the (parallel) processes in the Task Manager. Use theClear command

to clear the working space.

Empirical Data Examples: Individual and Hierarchical Analyss

In this section, we illustrate the use of BEESTS with the stop-signal data of 20
participants from the 40% stop-signal condition of the rst experiment reported in Bissett
and Logan (2011). The data set featured a relatively large nmber of 720 go trials and 480
stop-signal trials per participant. See Matzke et al. (in press) for the details on the data pre-
processing and the model tting. For all of the participants, the BEESTS implementation
yielded parameter estimates that are highly similar to the anes obtained from the WinBUGS

routine. For a comparison of the parameter estimates from tle BEESTS and the WinBUGS
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implementation, the reader is referred to the supplementalmaterials and to the empirical
data examples in Matzke et al. (in press).

Due to relatively high autocorrelations between the parameers, we ran long chains,
discarded the beginning of the chains as burn-in and thinnedeach chain. The results
reported below are based on 6,000 retained samples, usiblymber of chains = 3, Samples

= 36000 Burn-in = 12000, and Thinning = 12 .

Individual Analysis

In this section, we present the results of tting the data of Participant 1 with the
individual BPA. See the examples folder for the data set. Using three CPU cores, the
sampling took approximately 23 minutes with BEESTS. The sane analysis took about 15
hours with WinBUGS. The top left panel of Figure 6 shows the required data format for the
individual analysis. Figure 7 shows the posterior and priordistributions (left panel; option
Posterior distributions ) and the MCMC chains (right panel; option MCMC chainsfor
the six model parameters. The prior distributions are adeqately updated; the posteriors
are substantially narrower than the priors. The posterior distributions and the three MCMC
chains do not show signs of convergence problems. AR values were lower than 1.05. The
middle left panel of Figure 6 shows the summary statistics othe posterior distribution of the
model parameters (optionSummary statistic ). The posterior distributions are estimated
well as evidenced by the relatively small posterior standad deviations. The go parameters
are generally estimated more precisely than the stop paranters because the go parameters
are estimated based on the go RTs as well as the signal-respbrRTs and are therefore
better constrained by the data.

The bottom left panel of Figure 6 shows the summary of the postrior predictive
model checks (option Goodness-of-fit ) using 1000 samples from the joint posterior of
the model parameters Samples = 1000. As mentioned above, we advise users to assess
model t only on SSDs with a reasonable number of observed sital-respond RTs. For

instance, we assessed goodness-of- t only on SSDs with aia&t 10 observed signal-respond
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RTs. The one-sided p values on these ve SSDs (i.e., 200, 25800, 350, and 400 ms) are
far from 0 or 1 and the two-sided p values are all above 0.05. The left panel of Figure 8
shows the corresponding graphical summary for the model cloks. For the selected SSDs,
the observed median signal-respond RTs (i.e., black trianigs) are well within the 2:5" and
97:5™" percentile of the predicted median signal-respond RTs (segray violin plots), and are
adequately approximated by the median of the predicted medin signal-respond RTs (i.e.,
white circles). The results of the posterior predictive mocel checks indicated thus that the

BEESTS analysis appropriately accounted for the observed dta.

Hierarchical analysis

As explained above, the hierarchical approach has the potdial to provide accurate
parameter estimates with relatively few observations per articipant. To illustrate the ben-
e ts of the hierarchical approach over the individual BPA with scarce data, this section
presents the results of tting a subsample of the observatios from the Bissett and Logan
(2011) data set with the hierarchical as well as the individwal BPA. For each of the 20 par-
ticipants, we t a randomly selected 90 go RTs, 30 signal-repond RTs, and 30 successful
inhibitions with the hierarchical BPA. We then compared the results from the hierarchical
analysis to the results from tting the same subsample of daa with the individual BPA. Us-
ing three CPU cores, the hierarchical analysis took approxnately 3.5 hours with BEESTS.

The same analysis took about 100 hours with WinBUGS.

The top right panel of Figure 6 shows the required data formatfor the hierarchical
analysis. Figure 9 shows the posterior and prior distributbns (top panel) and the MCMC
chains (bottom panel) for the group-level mean and standarddeviation parameters. The
prior distribution of the group-level parameters are adequately updated; the posteriors are
substantially narrower than the priors and the chains have nixed well. The R values for
all group-level and individual parameters were lower than 105. The middle right panel of
Figure 6 shows the summary statistics of the posterior distibution of the group-level mean

and standard deviation parameters. The posterior distribuions are estimated relatively
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precisely. Note that if the Estimates for All  option is selected, BEESTS also produces
output (i.e., density plots of the posteriors, MCMC trace plots, and summary statistics) for

the individual go and stop parameters for each participant £parately.

The bottom right panel of Figure 6 shows the summary of the poterior predictive
model checks for Participant 1 using 1000 samples from the jot posterior of the participant-
level model parameters obtained with the hierarchical BPA.AIll posterior predictive p values
are well within an acceptable range. Note, however, that themedian signal-respond RTs |
observed and predicted| are based on only a few observations The right panel of Figure 8
shows the corresponding graphical summary of the posteriopredictive model checks. All
observed median signal-respond RTs are well within the rang of the median signal-respond
RTs predicted by the joint posterior of the model parameters Due to the scarcity of
the data, however, there is large uncertainty in the prediced median signal-respond RTs.
Compare the results of the posterior predictive model check in the bottom two panels
of Figure 8. The violin plots in the left panel show the predided median signal-respond
RTs from the individual analysis of the data of Participant 1 based on the full 1,200 trials.
The violin plots in the right panel show the predicted median signal-respond RTs from
the hierarchical analysis of the data of Participant 1 basedon a subsample of only 150
trials. Because the hierarchical analysis is based on sulmttially fewer observations than
the individual analysis of the full data set presented in the previous section, the predicted
median signal-respond RTs in the right panel are more spreadut than the predicted median
signal-respond RTs in the left panel. Posterior predictive p values resulting from such
unstable observed and predicted median signal-respond RTshould be interpreted with

caution.

To illustrate the bene ts of the hierarchical approach over the individual BPA with
scarce data, we compared the parameter estimates from the éiarchical analysis with es-
timates obtained from the individual analysis of the same sbsample of 150 trials. As
mentioned above, hierarchical modeling generally resultéh more accurate and less variable

estimates than single-level estimation. Figure 10 shows th posterior distribution of the
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stop parameters of Participant 1 obtained with the hierarchical and the individual BPA

using the same subsample of 150 observations. The gray detysplots show the posterior
distribution of the stop parameters from the hierarchical BPA. The black density plots

show the posterior distribution of the stop parameters fromthe individual analysis. The
posterior distributions of the stop parameters estimated wth the hierarchical approach are
less variable (i.e., smaller 95% Bayesian con dence inteal) than the posteriors estimated
with the individual BPA. Also, the posterior medians from th e hierarchical analysis are
|as expected| shrunk towards their corresponding group mea n (see also Matzke et al., in

press).

Discussion

The horse-race model presents various opportunities to eshate the latency of re-
sponse inhibition in the stop-signal paradigm. Most method, however, only focus on de-
riving a summary measure of SSRT. Recently, Matzke et al. (inpress) have developed a
Bayesian parametric approach (BPA) that allows for the estimation of the entire distribu-
tion of stopping latencies. Hence the BPA enables researcheto compare di erences in the
shape of SSRT distributions between experimental or clinial groups. Unfortunately, the
practical usefulness of the BPA is limited by the disadvantages of the current WinBUGS
implementation; the tting routine is extremely slow and ra ther user-unfriendly.

The goal of the present paper was therefore to promote the wiglspread application
of the Bayesian analysis of stop-signal data by introducingBEESTS, a relatively fast and
user-friendly software implementation of the BPA. BEESTS relies on Python for parameter
estimation and on R for the post-processing of the posteriordistribution of the model
parameters. For computational speed, the likelihood funcions are coded in Cython. The
software provides users with a range of output options, suctas summary statistics of the
posterior distribution of the parameters and various diagrostic tools to assess the quality
of the estimates. Importantly, BEESTS is equipped with an eay-to-use graphical user

interface.
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BEESTS can be applied to individual as well as hierarchical ®p-signal data. The
advantage of the individual approach lies in its simplicity. The advantage of the hierarchical
approach lies in its potential to provide accurate paramete estimates with relatively few
observations per participant. The bene ts of the hierarchical approach are less pronounced
in situations with a large number of observations per partidgpant and/or a small number of
participants. The choice between the individual and the higarchical approach in practical
applications depends on a delicate balance between the qutyl of the data, the number
of participants, the number of trials per participant, and w hether users are interested in
obtaining accurate parameter estimates on the participantlevel or are satis ed with in-
terpreting only the group-level parameters. Prior to data collection, users are encouraged
to generate synthetic data with varying number of trials and participants, t the data in
BEESTS, and inspect the parameter estimates in order to asss the expected uncertainty

of the model parameters under the di erent scenarios and modling approaches.

BEESTS assumes that go RTs and SSRTs are ex-Gaussian distibed and relies
on Bayesian parameter estimation to obtain estimates for tle go and stop parameters.
Note, however, that the BPA itself does not hinge on the particular parametric form
used to summarize the distributions, nor is it heavily in uenced by the exact choice of
the prior distributions. In our experience, the ex-Gaussian assumption and the corre-
sponding (group-level and hyper) prior distributions implemented in BEESTS provide
a reasonable default setting. Nevertheless, interested ass may adapt the source code
(https://github.com/twiecki/stopsignal ) to accommodate alternative parametric as-
sumptions or dierent prior settings. Also, the posterior predictive model check imple-
mented in BEESTS using the median signal-respond RT is only ne of many possible ap-
proaches to assess the goodness-of-t of the model. Users ynadapt the source code to
implement posterior predictive model checks using alterntive test statistics (see Matzke et

al., in press).
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Conclusion

Here we introduced a software package |BEESTS]| that allows f or the e cient es-
timation of entire SSRT distributions using MCMC sampling. BEESTS is equipped with a
graphical user interface and provides users with a wide rang of output options. BEESTS
allows researchers to rigorously address important quesins about the variability of stop-
ping latencies, such as the relationship between mean SSRThd SSRT variance. Similarly,
BEESTS enables investigators to assess di erences in the ape of go RT and SSRT distribu-
tions between clinical populations or experimental groups BEESTS therefore facilitates the
interpretation of stop-signal data and may open fruitful new avenues for response inhibition

research.
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Figure 6. BEESTS input and output.

The left panels show input and output for the

individual analysis. The right panels show input and output for the hierarchical analysis.

The top panels show the required data format. The middle panks show the output of the

Summary statistic

option. For the hierarchical analysis, only the group-levé mean and

group-level variability (i.e., standard deviation) param eters are shown. The bottom panels

show partial output for the Goodness-of-fit

option for Participant 1 in the Bissett and

Logan (2011) experiment. SRRT = signal-respond RT.
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Figure 7. Posterior (black solid lines) and prior distributions (black dotted lines; left panel)
and MCMC chains (right panel) of the model parameters for Paticipant 1 in the Bissett
and Logan (2011) data set obtained with the individual BPA.
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Figure 8. Results of the posterior predictive model checks for Partipant 1 in the Bissett
and Logan (2011) data set with the individual (panel a) and tk hierarchical (panel b) BPA.
See text for a detailed description of the posterior predicive analyses. For each SSD, the
gures show the observed median signal-respond RT (black fangle), a density plot of the
predicted median signal-respond RTs (gray violin plot), a boxplot ranging from the 25t
to the 75" percentile of the predicted median signal-respond RTs, andhe median of the

predicted median signal-respond RTs (white circle). SRRT =signal-respond RT.
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Figure 10. Posterior distribution of the stop parameters estimated fom a subsample of the
data of Participant 1 with the individual and the hierarchical BPA. The solid black and
gray lines show the posterior distribution of the stop paraneters and the corresponding
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in press).
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Appendix

Prior distribution of the model parameters

This appendix presents the prior distributions of the model parameters in the
BEESTS implementation of the Bayesian parametric approach(BPA). The name of each

parameter as shown in the BEESTS output is in brackets.

Individual BPA

The priors for the go and stop parameters are uniform distritutions, spanning a
plausible but wide range of values. BEESTS relies on slighyl more di use priors than the

WinBUGS implementation of the BPA (see Matzke et al., in press):

go (Mu_go) Uniform(0:001; 1000)
go (sigma,go) Uniform(1;500)
go (tau_go) Uniform(1;500)

3
stop (Mu_stop) Uniform(0:001; 600)

stop (Sigmastop)  Uniform(1; 350)

stop (tau_stop) Uniform(1; 350}

Hierarchical BPA

Individual parameters. The hierarchical BPA assumes that the go, go. go, stops
stop, @nd  stop Parameters of each participantj = 1;:::J come from truncated normal group-
level distributions. The group-level distributions are themselves characterized by a group
mean () and a group standard deviation ( ) parameter. The WinBUGS implementation
relies on normal group-level distributions that are truncated only at the lower end, whereas

BEESTS uses normal distributions that are truncated at the lower and the upper ends:
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go (Mu_go.subj) Normal( ,; ,)[0:00%1000]
go (sigmago.subj) Normal( ,; ,,)[1;500]
gg (tau_go.subj) Normal( ; ,,)[1;500] @
stop; (Mu_stop.subj) Normal( ., ; 4, )[0:001600]
stop; (Sigmasstop.subj) Normal( ., ; o )[1;350]
stop; (tau_stop.subj) Normal( ., ; < )[1; 350}

Group-level parameters The priors for the group mean and group standard deviations

are uniform distributions. Note that the WinBUGS implement ation uses censored normal

priors for the group-level means and relies on slightly lessdli use priors for the group-level

standard deviations than BEESTS:

g0 (MU_QO)

% (Mu_go.var)
5 (sigma.go)

% (Sigma.go.var)

5 (tau_go)
5 (tau_go.var)

(mu_stop)

stop

(mu_stop_var)

stop

(sigma.stop)

stop

(sigma_stop_var)

stop

(tau _stop)

stop

(tau _stop_var)

stop

Uniform(0:001; 1000)
Uniform(0:01; 300)
Uniform(1; 500)
Uniform(0:01; 200)
Uniform(1; 500)
Uniform(0:01; 200)
5)
Uniform(0:001; 600)
Uniform(0:01; 300)
Uniform(1; 350)
Uniform(0:01; 200)
Uniform(1; 350)

Uniform(0:01; 200):



