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Abstract
The stop-signal paradigm is a widely used procedure to study response in-

hibition. It consists of a two-choice response time task (go task) that is

occasionally interrupted by a stop signal instructing participants to with-

hold their response. The paradigm owes its popularity to the underlying

race model that enables estimation of the otherwise unobservable latency

of stopping. As the race model assumes a single go runner that produces

the response unless it is beaten by an inhibitory stop runner, it cannot ac-

count for errors on the go task. The stop-signal paradigm cannot, therefore,

be used with choice tasks with non-negligible error rates. We extend the

standard race model to account for go errors, and hence expand the scope

of the stop-signal paradigm to the study of response inhibition in the con-

text of difficult choices. We combine our treatment of go errors with the

ability to address two common contaminants in stop-signal data: failures to

trigger the go or the stop runner. We show with simulations that applying

the standard race model to difficult choices can severely bias conclusions

about response inhibition. Importantly, we also show that even infrequent

errors, which have been common in previous stop-signal studies, can result

in underestimation of stopping latencies. We demonstrate that our frame-

work enables researcher to study difficult-choice inhibition even in relatively

small samples by applying it to novel stop-signal data with high error rates

and a manipulation of task difficulty, showing that it provides an accurate

characterization of behavior and precise stop estimates.

Keywords: choice errors, ex-Gaussian distribution, go failures, stop-signal

paradigm, trigger failures
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Introduction

Response inhibition is a central component of executive control (Aron, Robbins, &

Poldrack, 2014; Logan, 1994; Miyake et al., 2000; Ridderinkhof, Van Den Wildenberg,

Segalowitz, & Carter, 2004). The concept refers to the ability to stop ongoing responses

that are no longer appropriate, such as stopping in the middle of an expletive (or preferably

earlier) during a job interview. As such, response inhibition facilitates adaptive and goal-

directed behavior in dynamic environments. In laboratory settings, response inhibition is

most commonly investigated using the stop-signal paradigm (Logan & Cowan, 1984; for

reviews, see Logan, 1994; Matzke, Verbruggen, & Logan, in press; Verbruggen & Logan,

2009).

The stop-signal paradigm typically consists of an easy two-choice response time (RT)

task, such as responding to the direction of an arrow (e.g., press left button for a left-pointing

arrow and right button for a right-pointing arrow). Occasionally, this primary “go” task

is interrupted by a stop signal presented on a variable delay (i.e., stop-signal delay [SSD])

that instructs participants to withhold their response on that trial. Response inhibition is

successful when the stop signal is presented sufficiently close to the onset of the go stimulus,

but it fails when the stop signal is presented close to the moment of response execution. The

stop-signal paradigm has been used in a variety of research areas to examine the neural,

cognitive, and developmental aspects of response inhibition in healthy as well as clinical

populations (e.g., Aron & Poldrack, 2006; Badcock, Michie, Johnson, & Combrinck, 2002;

Bissett & Logan, 2011; Chevalier, Chatham, & Munakata, 2014; Fillmore, Rush, & Hays,

2002; Forstmann et al., 2012; Hughes, Fulham, Johnston, & Michie, 2012; Matzke, Hughes,

Badcock, Michie, & Heathcote, 2017; Schachar & Logan, 1990; Verbruggen, Stevens, &

Chambers, 2014; Williams, Ponesse, Schachar, Logan, & Tannock, 1999).

Performance in the stop-signal paradigm has been conceptualized as a race between

two competing processes: a go process that is triggered by the choice stimulus and a stop

process that is triggered by the stop signal. If the go process wins, the response is executed;

if the stop process wins, the response is inhibited (Logan, 1981; Logan & Cowan, 1984). The
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stop-signal paradigm owes its popularity to the underlying race model that enables estima-

tion of the covert latency of the stop process, known as stop-signal RT (SSRT). SSRTs can

be estimated using traditional non-parametric methods or the recently developed Bayesian

parametric “BEESTS” approach (for an overview, see Matzke, Verbruggen, & Logan, in

press). The non-parametric approach provides researchers with a summary measure of the

latency of stopping, such as mean SSRT (Logan, 1994). The BEESTS approach (Matzke,

Dolan, Logan, Brown, & Wagenmakers, 2013; Matzke, Love, et al., 2013) allows researchers

to estimate the entire distribution of SSRTs using the assumption that go RTs and SSRTs

follow an ex-Gaussian distribution. Despite the fact that the finishing times of the stop pro-

cess cannot be directly observed, parameter recovery studies indicate that both approaches

produce accurate SSRT estimates if their assumptions are met and a sufficient number of

stop-signal trials are available (e.g., Band, van der Molen, & Logan, 2003; Matzke, Dolan,

et al., 2013).

Using a choice go task in the stop-signal paradigm, rather than simple detection of

the onset of a stimulus, has the advantage that it minimizes anticipatory responses, because

accurate choices cannot be made without processing the stimulus to some degree. However,

it also means that the stop-signal task mismatches the standard race model, which assumes

only a single go process or “runner”. A single go runner corresponds to detection, whereas

to properly represent choice, a model must postulate a runner for each potential response.

Despite the rich history of cognitive models to simultaneously account for RTs and choice

accuracy using evidence accumulation processes (e.g., Brown & Heathcote, 2008; Ratcliff,

1978; Ratcliff, Smith, Brown, & McKoon, 2016; Ratcliff & Smith, 2004), neither the non-

parametric nor the BEESTS framework addresses errors on the go task, which we refer to

as “go errors”. In fact, both approaches typically discard go errors as contaminants, and

rely only on correct RTs for estimating stopping latencies (e.g., Matzke, Love, et al., 2013;

Verbruggen, Logan, & Stevens, 2008).

The practice of treating go errors as contaminants is not a problem if the choice is

easy enough so that errors are rarely made, and if the distribution of RTs for each choice is
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identical. In practice, the distribution of errors is rarely checked, and even for easy choices,

errors always occur for at least some participants, if only at a relatively low level (e.g.,

Bissett & Logan, 2011; Logan, Van Zandt, Verbruggen, & Wagenmakers, 2014; White et

al., 2014). Moreover, error rates may differ among experimental manipulations, and certain

clinical conditions, such as schizophrenia, may also foster error-prone performance (e.g.,

Hughes et al., 2012). Surprisingly, we are unaware of any previous study that investigated

what error rate, or what difference in error rate, it is safe to ignore.

More broadly, the restriction to easy choices means that the stop-signal paradigm

cannot be used to investigate response inhibition in the full range of choice tasks used in

experimental psychology, which can involve a level of difficulty that results in non-negligible

levels of errors, or which can rely on manipulations that affect error rates. Given that it

seems unlikely—and is certainly unproven—that inhibition is a unitary construct, whereby

measurements made with one easy choice task automatically generalize to other perhaps

harder choice tasks, it would be of general benefit to experimental psychologists to extend

the race model, and hence the applicability of the stop-signal paradigm, to difficult choices.

Following the cognitive-modeling tradition, Logan et al. (2014) developed a general

race model with one evidence accumulation process (runner) per choice, and applied it

to data with low error rates and thousands of stop-signal trials per participant. Although

this fully cognitive-process-model approach is theoretically attractive, associated estimation

problems make it difficult to apply it in practice, especially with the number of stop-signal

trials—rarely more than 200— typically collected in most experimental investigations.

To address this limitation, in this paper, we blend measurement and cognitive-process

approaches in order to expand the standard race model to account for go errors, and hence

expand the scope of the stop-signal paradigm to the study of response inhibition in the

context of difficult choices. We show that our model has good measurement properties,

and so can be practically applied in the broad range of tasks and populations studied in

experimental psychology where the number of stop-signal trials that can be obtained from

each participant may be limited.
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We combine our treatment of go errors with two other extensions that better enable

researchers to deal with stop-signal data collected in the real world. Real stop-signal data

are often contaminated by the effects of processes other than inhibition, and so rarely—

if ever– adhere to the idealized circumstances assumed by the standard race model. In

particular, we build on the mixture-likelihood extension of BEESTS developed by Matzke,

Love, and Heathcote (2017) to account for failures to launch the stop process, which we

refer to as “trigger failures” (Logan, 1994). Here we use the same method to account for

failures to launch the go process and hence errors of omission in the go task, which we

refer to as “go failures”. It is important to account for trigger failures because they can

spuriously inflate SSRT estimates and cause deficits of attention to be mistaken for deficits

of inhibition (see Matzke, Hughes, et al., 2017). Go failures, which are not uncommon

in children and clinical populations (Tannock, Schachar, Carr, Chajczyk, & Logan, 1989),

have the opposite effect; they masquerade as increased inhibitory ability and reduce SSRT

estimates. For instance, researchers may erroneously conclude that two groups differ in

SSRT because of differences in go failures that spuriously inflate the apparent inhibitory

ability of one group of participants. Alternatively, go failures and trigger failures can also

mask differences in SSRT estimates when biases from the different sources trade off with

each other or with differences in the latency of stopping. Our model provides the first

unified treatment of these two types of contaminants.

Addressing go errors and go-and trigger failures in a unified framework is essential

because their combined effects on SSRT estimates are difficult to anticipate. In fact, as we

demonstrate shortly, even a single contaminant in isolation can produce surprisingly strong

distortions. For instance, we show that go errors—even when infrequent (∼ 2.5%)—can

bias SSRT estimates, especially when, as is commonly the case, error responses are slower

than correct responses. We also demonstrate that our unified approach ameliorates these

strong distortions and interactions, regardless whether contamination occurs at a low or

high level.

In what follows, we first review the standard BEESTS model (Matzke, Love, et al.,
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2013), which forms the basis of our modeling framework. We then develop the unified

model of go failures and trigger failures, and test its estimation properties in a parameter

recovery study. Next, we develop and test the full model that also incorporates choice errors.

Finally, we apply the resulting model to novel stop-signal data that features manipulation

of task difficulty and show that it provides relatively precise parameter estimates with only

100 stop-signal trials per participant. Importantly, we compare the performance of our

framework to the standard BEESTS model with trigger failures (i.e., the model already

investigated by Matzke, Love, & Heathcote, 2017) that does not account for go errors.

We show that both models appear to accurately describe performance, so goodness-of-

fit alone is insufficient to alert researchers to mis-specification with respect to go errors.

We find non-negligible differences between the parameter estimates produced by the two

models, demonstrating that ignoring go errors can cause fictitious inhibitory differences

and may mislead researchers. The software implementation of our modeling framework and

the data from the example application are available on the Open Science Framework at

https://osf.io/2mv8f/.

BEESTS: Bayesian Estimation of SSRT Distributions

The present unified framework is based on BEESTS (Matzke, Dolan, et al., 2013;

Matzke, Love, et al., 2013), a Bayesian parametric race model that enables the estimation

of the entire distribution of unobservable SSRTs. As shown in Figure 1, BEESTS assumes

that response inhibition is determined by the relative finishing times of two independent

processes: a stop process and a single go process.

BEESTS assumes that go RTs and SSRTs follow an ex-Gaussian distribution. The ex-

Gaussian is a frequently used descriptive RT distribution obtained by the convolution of a

Gaussian and an exponential random variable (Heathcote, Popiel, & Mewhort, 1991; Hohle,

1965; Matzke & Wagenmakers, 2009; Ratcliff, 1978). The µ and σ parameters quantify the

mean and standard deviation of the Gaussian component, and τ reflects the slow tail of the
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go RT distribution

Stop−signal RT distribution
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Figure 1 . Race between a stop process and a single go process. SSD = stop-signal delay.
If go RT is slower than SSRT + SSD, the go RT is inhibited; if go RT is faster than
SSRT + SSD, the go RT cannot be inhibited and results in a signal-respond RT (see also
Matzke, Dolan, et al., 2013).

distribution. The probability density function of the ex-Gaussian distribution is:
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τ
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and its mean and variance equal
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E = µ+ τ (4)

and

Var = σ2 + τ2, (5)

respectively.

BEESTS relies on a separate set of ex-Gaussian parameters to describe the go RT

and SSRT distributions: µ, σ, and τ for go RTs and µS , σS , and τS for SSRTs. Following

traditional non-parametric methods, BEESTS assumes both context and stochastic inde-

pendence and hence treats the go RT distribution on go trials as the underlying distribution

of go RTs on stop-signal trials (Logan & Cowan, 1984).

BEESTS was developed within the Bayesian framework, partly because maximum-

likelihood estimation (Myung, 2003) is computationally infeasible for the hierarchical ex-

tension of the model. BEESTS enables researchers to infer the posterior distribution of the

model parameters by updating the prior distributions with incoming data. The prior distri-

bution reflects existing knowledge about the parameter. The posterior distribution reflects

knowledge about the parameter after the data have been observed. The central tendency

of the posterior, such as the mean and median, may be used as a point estimate for the

parameter. The 95% credible interval of the posterior (i.e., area between 2.5th and 97.5th

percentile) encompasses the range of values that contains the true value of the parameter

with 95% probability; the wider the 95% credible interval, the greater the uncertainty of the

estimate. Bayesian inference is particularly suited for cognitive modeling because it offers

a coherent inferential framework, which allows researchers to respect the complexity of the

data-generating process and incorporate prior information (see also Lee, 2011).
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A Unified Framework for Modeling Stop-Signal Data

In this section, we first extend BEESTS to simultaneously account for go failures and

trigger failures. We then show how this model can be augmented to accommodate go errors.

The first extension relies on a mixture-likelihood approach (e.g., Ratcliff & Tuerlinckx, 2002)

to model go failures and trigger failures. The second approach adds an additional runner to

the standard race model to accommodate go errors and extend the model to difficult choice

tasks. We then present a series of large-sample (i.e., asymptotic) parameter recovery studies

in order to verify the identifiability of the extensions. The small-sample performance of the

ex-Gaussian distribution—also in the context of the stop-signal task—has been explored

elsewhere (e.g., Cousineau, Brown, & Heathcote, 2004; Farrell & Ludwig, 2008; Heathcote,

Brown, & Mewhort, 2002; Matzke, Dolan, et al., 2013), and is expected to generalize to the

present approach.

Modeling Go Failures and Trigger Failures

Figure 2 shows the effects of go failures and trigger failures on the inhibition function.

The inhibition function, which plays a crucial role in SSRT estimation, describes the rela-

tionship between signal-respond rate and SSD. The black dots outline an inhibition function

for a situation where the go and stop processes are triggered reliability on every stop-signal

trial. The inhibition function increases steeply with increasing SSD and asymptotes at 0 for

short and at 1 for long SSDs. The gray dots outline an inhibition function with 15% go fail-

ures; go failures decrease the steepness and the upper asymptote of the inhibition function,

resulting in underestimation of stopping latencies. The gray crosses outline an inhibition

function with 15% trigger failures; trigger failures decrease the steepness and increase the

lower asymptote of the inhibition function, resulting in overestimation of stopping latencies.

The gray triangles outline an inhibition function with 15% go and 15% trigger failures; the

simultaneous presence of go and trigger failures increases the lower and decreases the upper

asymptote, and further decreases the steepness of the inhibition function.

Go failures can be accounted for in the non-parametric framework by correcting the
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Figure 2 . The effect of go failures and trigger failures on the inhibition function.
P (response | stop signal) = signal-respond rate; SSD = stop-signal delay.

inhibition function using the observed number of omissions on go trials without a stop

signal (Tannock et al., 1989). Trigger failures can be accounted for in the BEESTS frame-

work by augmenting the standard model with an additional parameter, PTF , that quantifies

the probability of trigger failures (Matzke, Love, & Heathcote, 2017). The resulting mix-

ture model not only corrects the inhibition function but also estimates the unobservable

probability that participants fail to trigger the stop process. We denote the trigger-failure

BEESTS model as BEESTS2, where “2” stands for a race between two processes: a stop

process and a go process. Despite the well-known methodological problems associated with
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their presence, go failures and trigger failures have not yet been modeled simultaneously in

a unified framework.

To address this limitation, we augmented BEESTS2 with an additional parameter,

PGF , that quantifies the probability of go failures. We denote the resulting mixture model

as BEESTS2-GF, where “GF” stands for go failures. The term mixture reflects the structure

of the model’s likelihood, which is a weighted sum of an ex-Gaussian likelihood (when there

is no race because there is only one runner) and the likelihood of the minimum of two

ex-Gaussians (when there are two runners).

According to BEESTS2-GF, go RTs result from go trials where the go process was

successfully triggered with probability 1− PGF . The likelihood of go RT tg, g = 1, ..., G is

then:

LGOg(θgo, PGF ) = (1− PGF )× fg(θgo), (6)

where f(θgo) is the ex-Gaussian probability density function (Equation 1) of the finishing

time distribution of the go process with parameters θgo = (µ, σ, τ).

Signal-respond RTs result from stop-signal trials where the go process was successfully

triggered with probability 1−PGF . Following Matzke, Love, and Heathcote (2017), signal-

respond RTs are produced with (1) probability PTF if the stop process was not triggered;

or (2) probability 1−PTF if the stop process was triggered but finished after the go process

(i.e., go RT < SSD + SSRT ). The likelihood of signal-respond RT tr, r = 1, ..., R, for a

given SSD is then

LSRr(θgo,θstop, PTF , PGF , SSD) =

(1− PGF )×{
PTF × fr(θgo)+
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(1− PTF )× fr(θgo)× Sr(θstop, SSD)
}
, (7)

where S(θstop) is the ex-Gaussian survival function of the finishing time distribution of the

stop process defined as 1−F (θstop) (Equation 3) with parameters θstop = (µS , σS , τS). PGF

is assumed to be independent of SSD and trial type (i.e., go, signal respond, and signal

inhibit).

Successful inhibitions are produced with (1) probability PGF × PTF if neither the go

nor the stop process was triggered; or (2) probability PGF × (1 − PTF ) if only the stop

process was triggered; or (3) probability (1−PGF )× (1−PTF ) if both the go and the stop

processes were triggered and the stop process finished before the go process (i.e., go RT

> SSRT + SSD). The likelihood of signal-inhibit trial s, s = 1, ..., S, for a given SSD is

then:

LSs(θgo,θstop, PTF , PGF , SSD) =

PGF × PTF+

PGF × (1− PTF )
∫ ∞
−∞

fs(θstop, SSD)dts+

(1− PGF )× (1− PTF )×
∫ ∞
−∞

fs(θstop, SSD)× Ss(θgo)dts, (8)

where f(θstop) is the ex-Gaussian probability density function of the finishing time distribu-

tion of the stop process and S(θgo) is the ex-Gaussian survival function of the finishing time

distribution of the go process. As SSRTs are unobservable, the likelihood of signal-inhibit

trials involves integrating over t. Simplification results in:

LSs(θgo,θstop, PTF , PGF , SSD) =

PGF + (1− PGF )× (1− PTF )×
∫ ∞
−∞

fs(θstop, SSD)× Ss(θgo)dts. (9)
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Parameter Recovery. We generated a single stop-signal data set with 75, 000 go

and 25, 000 stop-signal trials from BEESTS2-GF with PTF = 0.1 and PGF = 0.1. SSD

was set using the staircase-tracking procedure: SSD was increased by 0.05s after successful

inhibitions and it was decreased by 0.05s after failed inhibitions, resulting in a overall signal-

respond rate of approximately 0.50 (e.g., Logan, 1994).1 The black triangles in Figure 3

show the data-generating go and stop parameters; the values are representative of estimates

found in earlier applications of BEESTS2. The relatively high level of go failures is not

uncommon in children or clinical populations (Tannock et al., 1989).

We fit the data set with the “true” data-generating BEESTS2-GF model as well as

the misspecified BEESTS2 model that does not account for go failures. We used weakly

informative uniform prior distributions for the go and stop parameters. The PTF and PGF

parameters were assigned non-informative uniform distributions that covered the entire

allowable range between 0 and 1 (see Matzke, Love, & Heathcote, 2017). We used this prior

set-up for all our parameter recoveries. The exact specification of the prior distributions is

available in the Supplemental Materials at https://osf.io/2mv8f/.

We used the Differential Evolution Markov Chain Monte Carlo (DE-MCMC; ter

Braak, 2006) algorithm to sample from the posterior distribution of the parameters. DE-

MCMC is particularly suited for obtaining posterior samples from cognitive models with

highly correlated parameters (Turner, Sederberg, Brown, & Steyvers, 2013). We set the

number of MCMC chains to three times the number of model parameters; for BEESTS2 we

ran 21 and for BEESTS2-GF we ran 24 chains with over-dispersed start values. In order to

reduce auto-correlation, we thinned each MCMC chain to retain only every 20th posterior

sample. During the burn-in period, we set the probability of a migration step to 5%. After

burn-in, we turned off migration and preformed only crossover steps until the chains con-

verged to their stationary distribution. We assessed convergence using visual inspection of

the chains and univariate and multivariate proportional scale reduction factors (R̂ < 1.1;

Brooks & Gelman, 1998; Gelman & Rubin, 1992). After convergence, we obtained an ad-

1The recovery results generalize to stop-signal data sets with fixed SSDs.
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ditional 20, 000 samples per chain; inference about the parameters was based on this final

set of posterior samples. Unless indicated otherwise, we used the same sampling regime for

all our analyses.

The results of the recovery study are shown in Figure 3. The black posterior distri-

butions were computed with the true BEESTS2-GF model. BEESTS-GF’s recovery was

excellent; the parameters were estimated precisely (i.e., narrow posteriors) and the true

values were well within the 95% credible interval of the posteriors. As expected, the newly

added PGF parameter was estimated very accurately because it is largely determined by

the observed proportion of omission errors on go trials (Equation 6). The gray posterior

distributions were computed with the misspecified BEESTS2 model that does not account

for go failures. The go parameters were not biased by the presence of go failures as go

failures were assumed to affect a random PGF proportion of trials. In contrast, the stop

parameters were heavily biased by the presence of go failures; relative to BEESTS2-GF,

BEESTS2 underestimated τS by 0.036s and overestimated µS and σS by 0.017s and 0.035s,

respectively. This pattern of bias resulted in a nearly 0.02s underestimation of mean SSRT

(i.e., µS + τS ; Equation 4). Unmodeled go failures also caused bimodality in the posterior

distribution of µS . Recovery of the PTF parameter was unaffected by go failures.

Modeling Go Errors

In order to account for go errors and extend the model to difficult choice tasks,

we augmented BEESTS2-GF with an additional go process. We denote this model as

BEESTS3-GF, where “3” stands for a race between three independent runners, one runner

that corresponds to the stop response and two runners that correspond to the two possible

responses on the go task (e.g., left and right button presses). As before, we used the

ex-Gaussian distribution to describe the finishing time distributions of the go and stop

processes.

On a given go trial, the response and corresponding go RT is determined by the

outcome of a race between the two go processes. The likelihood of response i, i = 1 or 2,
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Figure 3 . Bias in parameter estimates as a result of go failures. The black posterior distri-
butions are computed with BEESTS2-GF. The gray posterior distributions are computed
with the misspecified BEESTS2 that does not account for go failures. The arrows show
the 95% credible interval (CI) of the posterior distributions. The dashed lines show the
prior distributions. The black triangles show the true values. Mean SSRT is computed as
µS + τS . Each panel shows the difference (in seconds) between the posterior mean of the
BEESTS2-GF and BEESTS2 estimates.

on go trial g, g = 1, ..., G, is then:



GENERALIZING THE STOP-SIGNAL RACE MODEL 16

LGOig(θgoi ,θgoj , PGF ) = (1− PGF )× fg(θgoi)× Sg(θgoj ), (10)

where f(θgoi) is the Ex-Gaussian probability density function of the finishing time distribu-

tion of go process i with parameters θgoi = (µi, σi, τi) and S(θgoj ) is the ex-Gaussian survival

function of the finishing time distribution of go process j with parameters θgoj = (µj , σj , τj).

The model assumes a common PGF parameter for the two go processes. Note that the

present approach may be extended to accommodate more than two response options on

the go task (e.g., Brown & Heathcote, 2008; Heathcote & Love, 2012; Logan et al., 2014;

Rouder, Province, Morey, Gomez, & Heathcote, 2015).

On a given signal-respond trial, the response and corresponding signal-respond RT is

determined by the outcome of a race between the stop process and the two go processes.

The likelihood of response i on signal-respond trial r, r = 1, ..., R, for a given SSD is then:

LSRir(θgoi ,θgoj ,θstop, PTF , PGF , SSD) =

(1− PGF )×(
PTF × fr(θgoi)× Sr(θgoj )+

(1− PTF )× fr(θgoi)× Sr(θgoj )× Sr(θstop, SSD)
)
.

(11)

Lastly, the likelihood of signal-inhibit trial s, s = 1, ..., S, for a given SSD is:

LSs(θgoj ,θstop, PTF , PGF , SSD) =

PGF + (1− PGF )(1− PTF )×
∫ ∞
−∞

fs(θstop, SSD)×
N=2∏
j=1

Ss(θgoj )dts. (12)
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Parameter Recovery. We assessed parameter recovery with two simulation stud-

ies. The first study focused on the three-runner BEESTS model without go failures

(BEESTS3) and examined the effects of unmodeled go errors; the second study focused

on BEESTS3-GF and examined the combined effects of go errors and 10% go failures. In

both studies, we investigated four scenarios: low (2.5%) and high go-error (20%) rate, where

errors were either on average 0.015s faster or 0.08s slower than correct responses. Fast errors

typically occur when response speed is emphasized and slow errors when response accuracy

is emphasized (Ratcliff & Rouder, 1998). The infrequent slow error RT condition is probably

the most representative of existing stop-signal data sets.

In both studies, we generated four stop-signal data sets using staircase tracking,

each with 75, 000 go and 25, 000 stop-signal trials. The black triangles in Figure 4 and

Figure 5 show the data-generating go and stop parameters for BEESTS3 and BEESTS3-GF,

respectively. Parameters for the go runner that matches the choice stimulus (“matching”

parameters, which would be expected to have small values so that the runner finishes

quickly and typically wins) are indicated by “+” subscripts, and those for the runner that

mismatches the choice stimulus by “-” subscripts. We fit each data set with its respective

true model as well as the misspecified BEESTS2 model that does not account for go errors

and go failures. For the BEESTS2 analyses, we removed all error responses on go trials and

signal-respond trials, as is typical in practice.

For brevity, we indicate the BEESTS2 parameters of the go RT distribution using the

same “+” subscript as for the BEESTS3 and BEESTS3-GF matching parameters, but note

that in BEESTS2 they do not correspond to the Ex-Gaussian distribution of the matching

runner. Rather they largely correspond to the observed correct go RT distribution, which

is a censored version of the matching distribution, with censoring corresponding to cases

where the mismatching runner wins. The correspondence is not complete because these

parameters also determine the censoring of the stop runner’s distribution that predicts the

observed signal-respond RT distribution.

Figure 4 shows the results of the first recovery study. The black horizontal lines
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show the 95% credible intervals of the posterior distributions computed with the true

BEESTS3 model. The full posterior distributions are available in the Supplemental Ma-

terials. BEESTS3’s recovery of the true values of the matching go (µ+, σ+, and τ+) and

stop parameters, including PTF , is excellent in all four scenarios. The parameters were

estimated precisely and the true values were well within the 95% credible intervals. The

precision of the mismatching go estimates (µ−, σ−, and τ−) was influenced by error rate and

the relative speed of error and correct RTs. For slow errors, the mismatching go parameters

were estimated precisely, even when error rates were low. For fast errors, the mismatching

go parameters, especially τ−, were estimated precisely only in the high-error scenario.

The gray horizontal lines in Figure 4 show the 95% credible intervals computed with

the misspecified BEESTS2 model that does not account for go errors. Unmodeled go errors

biased both go and stop parameters. The degree of bias varied with error rate and the

relative speed of error and correct RTs. Moreover, the misspecified BEESTS2 analysis

inflated the uncertainty of the stop estimates. When errors were fast and infrequent (2.5%

Fast), the go and stop parameters were largely unaffected by errors. When errors were

fast and frequent (20% Fast), relative to BEESTS3, BEESTS2 produced a slight 0.008s

underestimation of τ+. When errors were slow and infrequent (2.5% Slow), BEESTS2

underestimated τ+ by 0.017s. Although the stop parameters were not affected strongly

when considered in isolation, the slight downward bias in µS and τS resulted in a 0.011s

underestimation of mean SSRT. Lastly, when errors were slow and frequent (20% Slow),

both go and stop parameters were heavily biased. BEESTS2 underestimated τ+ by 0.078s

and overestimated µ+ and σ+ by 0.046 and 0.008s, respectively. Importantly, BEESTS2

resulted in a 0.031s overestimation of σS and a 0.031s underestimation of τS . This pattern

resulted in a 0.025s underestimation of mean SSRT. The PTF parameter was unaffected by

errors.

Figure 5 shows the results of the second recovery study. The black horizontal lines

show the 95% credible intervals computed with the true BEESTS3-GF model. As expected,

BEESTS3-GF’s recovery of the matching go and stop parameters, including PTF and PGF ,
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was excellent in all four scenarios. As before, the precision of the mismatching go estimates

was influenced by error rate and the relative speed of error and correct RTs.

The gray horizontal lines in Figure 5 show the 95% credible intervals computed with

the misspecified BEESTS2 model that does not account for go errors and go failures. The

simultaneous presence of go errors and go failures biased both go and stop parameters,

including PTF . As before, the misspecified BEESTS2 analysis inflated the uncertainty of

the stop estimates.

As expected, the bias in the go parameters closely matched the results in Figure 4;

the go parameters are influenced by go errors but not by go failures (see Figure 3). The stop

parameters were heavily biased regardless of the frequency and latency of errors. Relative to

BEESTS3-GF, BEESTS2 overestimated σS in all four scenarios, with frequent slow errors

producing the largest, 0.055s, bias. In contrast, BEESTS2 underestimated τS , with the

magnitude of the bias varying between 0.031 and 0.040s. The µS parameter was largely

unaffected by slow errors, but was slightly overestimated in the presence of fast errors. The

relatively small bias in µS was the consequence of the chosen parameter setting and the

strong correlation between µS and τS ; additional simulations confirmed that µS can also

show a substantial downward bias dependent on the parameter setting. This pattern of bias

resulted in strong underestimation of mean SSRT in all four scenarios, with frequent slow

errors producing the largest, 0.037s, bias. Lastly, in contrast to the previous simulations,

BEESTS2 underestimated PTF by 3.2 and 4.8% in the presence of infrequent and frequent

slow errors, respectively.

The recovery studies clearly demonstrated that applying the standard two-runner

model to difficult choice tasks can severely bias conclusions about response inhibition. In

particular, the simulations showed that unmodeled go errors and go failures can bias esti-

mates of go RT and SSRT distributions, as well as estimates of the probability of trigger

failures. When considered in isolation, go failures did not influence the go parameters; they

did however bias all three stop parameters. When considered in isolation, go errors biased

both go and stop parameters, but the degree of bias varied with error rate and the relative
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speed of error and correct RTs. Importantly, even when infrequent, slow errors resulted in

underestimation of mean SSRT. The combination of go errors and go failures resulted in

heavily biased stop estimates, regardless of the frequency and latency of errors. Notably,

we also observed a substantial underestimation of PTF , a synergistic bias that was specific

to the simultaneous presence of the two types of mis-specification.

In contrast, models that properly represented the data generating processes recovered

the true values of the (matching) go and the stop parameters, including PTF and PGF ,

very well. Although the precision of the mismatching go estimates was influenced by the

frequency an latency or error responses, explicitly modeling errors mitigated the bias that

would have otherwise distorted estimates of go RT and SSRT distributions.

Fitting Real-World Stop-Signal Data

In this section, we illustrate the advantages of our unified modeling framework with

novel stop-signal data that feature a manipulation of task difficulty. The difficulty manip-

ulation resulted in 12% go errors in the Easy and 25% go errors in the Difficult condition.

Instructions and post-response feedback for the go task successfully emphasized the impor-

tance of responding on every trial in a fast but accurate manner, with errors that were on

average 0.085s slower than correct responses and an overall go-omission rate of only 1%,

although this did vary between 0 − 9% over participants. The high error rate allowed us

to compare the performance of BEESTS2 and BEESTS3 and demonstrate the deleterious

effects of unmodeled go errors in real data. Second, the low go-omission rate allowed us to

compare the performance of BEESTS3 and BEESTS3-GF and demonstrate that BEESTS3-

GF may be safely used even if go omissions are infrequent, as is typical in well-motivated

and trained undergraduate populations.

Task and Participants

The two-choice go task required participants to press either the “Z” or “/” keys on a

standard US keyboard with their left or right index finger to indicate whether a random-dot
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kinematogram (RDK) displayed 45 degree left or right upward global motion, respectively.

The RDK consisted of 40 dots moving in an invisible circular area of 50mm in diameter.

The dots were refreshed at the rate of 30 frames per second. The coherence of the global

motion was measured as the percentage of dots moving in a uniform direction, with higher

coherence supporting easier perceptual judgments. On each trial, a blank screen preceded

the stimulus for 0.25s, followed by a fixation point for 0.25s. The stimulus was presented

for 3s.

In an initial session, participants practiced the go task over 9 blocks of 49 trials.

The first block familiarized participants with the task, with difficulty gradually increased

by decreasing coherence from 65% to 20%. The second and third blocks contained three

levels of coherence: 5%, 10%, and 20%. Performance in these blocks determined task

difficulty for the remainder of the procedure, with either 5% and 10% coherence stimuli

allocated to the Difficult and Easy conditions, respectively, or 10% and 20%, depending on

which pair produced an average accuracy closest to 75%. Between blocks, participants were

encouraged to rest as required, and then to initiate the next block by pressing the space

bar. Participants were instructed to perform quickly but accurately. Correct responses were

followed by feedback on RTs; incorrect responses were followed by the feedback “Incorrect”

or “Too Slow” if they failed to respond within 3s. First session results from a subset of

participants used as controls were reported in Heathcote, Suraev, Curley, Gong, and Love

(2015).

The stop-signal session took place on the following day and consisted of 9 blocks of

49 trials, with the first block and first trial of each block excluded from further analysis.

The visual stop-signal (i.e., a gray square boarder around the go stimulus) was presented

on 14 randomly selected trials per block (approximately 29% of trials). Participants were

instructed to withhold their response to the go stimulus when the stop signal occurred.

SSD was determined via two methods: fixed and staircase tracking. Fixed SSDs were set at

0.05s and were used for two randomly selected trails per block. The remaining 12 SSDs per

block were determined using staircase tracking. The first staircase SSD in the experiment
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was set at 0.2s. For subsequent stop trials, successful inhibitions increased SSD by 0.033s,

failed inhibitions decreased it by 0.033s.

Seventy six participants were recruited from three sources: an undergraduate student

pool, the Hunter Medical Research Institute volunteer register, and the local community

(see Heathcote et al., 2015 for details of recruitment, inclusion and exclusion criteria, and

associated psychometric testing performed before the first session). Student participants

received course credit and non-student participants received $40 to cover their expenses in

attending the testing sessions. The study was approved by the Human Research Ethics

Committee of the Newcastle University.

Due to a programming error, the maximum inter-stimulus interval for the first 15

participants was set at 2s. This resulted in truncation of the slow tail of the RT distributions

for 4 participants, who were therefore excluded from analysis. Eleven participants were

excluded because they responded with less than 60% accuracy on the go trials in the stop-

signal session, and 6 were excluded who did not respond on greater than 3% of all go trials

in both the go and stop sessions. Finally, two participants were excluded because they failed

to stop on more than 75% of the stop-trials, leaving a final sample of 53 participants.

Bayesian Hierarchical Modeling

We used Bayesian hierarchical modeling to infer the posterior distribution of the

BEESTS2, BEESTS3, and BEESTS3-GF parameters. Rather than estimating parameters

for each participant separately, we explicitly modeled individual differences in parameter

values with population-level distributions (e.g., Gelman & Hill, 2007; Lee, 2011; Matzke

& Wagenmakers, 2009; Rouder, Lu, Speckman, Sun, & Jiang, 2005; Shiffrin, Lee, Kim, &

Wagenmakers, 2008). The population-level distributions function as priors that “shrink”

extreme participant-level estimates to the population mean. The degree of shrinkage is

determined by the relative uncertainty of the estimates; uncertain estimates are pulled more

strongly to the population mean than precise estimates. Bayesian hierarchical modeling

can result in less variable, and on average, more accurate participant-level estimates than
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individual maximum likelihood or Bayesian estimation (Farrell & Ludwig, 2008; Rouder

et al., 2005), especially in situations with moderate between-subject variability and scarce

participant-level data (Gelman & Hill, 2007).

We assumed (truncated) normal population-level distributions for all model parame-

ters. The population-level distributions were described by a set of population-level param-

eters: the population means and standard deviations, which were inferred from data using

weakly informative priors. For instance, each participant’s τS parameter was drawn from a

normal population-level distribution truncated at 0 and 4s, with mean µτS and standard de-

viation στS .2 The population mean µτS was assigned a normal prior distribution truncated

at 0 and 4s, with mean 0.1 and standard deviation 1. The population standard deviation

στS was assigned an exponential prior distribution with rate 1. The participant-level PTF

and PGF parameters were first projected from the probability scale to the real line with a

probit (i.e., standard normal cumulative distribution function) transformation before mod-

eling them with normal population-level distributions (e.g., Matzke, Dolan, Batchelder, &

Wagenmakers, 2015; Rouder, Lu, Morey, Sun, & Speckman, 2008). The exact specification

of the population-level priors is available in the Supplemental Materials. Note that Bayesian

parameter estimation is robust to changes in the prior as long as the data are sufficiently in-

formative (Lee & Wagenmakers, 2013). As we demonstrate here, even with relatively diffuse

priors, the type of data typically available in stop-signal studies is sufficiently informative

to allow our model to provide well-behaved and relatively precise parameter estimates.

We estimated a separate set of go parameters for the Easy and the Difficult con-

ditions. The PTF , PGF , and the stop parameters were constrained to be equal between

the two conditions. For the BEESTS2 analysis, we removed all error responses on go and

signal-respond trials. We set the number of MCMC chains to three times the number of

model parameters per participant; for BEESTS2 we ran 30, for BEESTS3 we ran 48, and for

BEESTS3-GF we ran 51 MCMC chains. To facilitate convergence, we first fit each partici-

pant’s data separately. The mean and standard deviation of the posterior means from the

2The upper truncation is not necessary, but is numerically helpful.
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individual fits were then used to obtain start values for the population means and standard

deviations, respectively. The last samples from the joint posterior of the individual fits were

used as start values for the participant-level parameters.

We thinned each MCMC chain to retain only every 5th posterior sample. During the

burn-in period, we set the probability of a migration step to 5% both at the participant

and the population level. After burn-in, we preformed only crossover steps until the chains

converged to their stationary distribution. After convergence, we obtained an additional

100 samples per chain for BEESTS2, and BEESTS3 and 200 samples for BEESTS3-GF.

Inference about the parameters was based on these final set of posterior samples.

Posterior Inference

The black horizontal lines in Figure 6 show the 95% credible interval of the posterior

distributions of the population means computed with BEESTS2, BEESTS3, and BEESTS3-

GF in the Easy condition; the gray lines show credible intervals computed in the Difficult

condition. The triangles show the median of the posterior distributions. The population

means for PTF and PGF were transformed back to the probability scale with a bivariate

inverse-probit transformation. Bayesian p values (e.g., Klauer, 2010; Matzke, Boehm, &

Vanderkerckhove, in press), computed as the proportion of posterior samples that are lower

in the Difficult than in the Easy condition, are shown in the upper right corners; p values

close to zero or one indicate that the posterior distribution in the Easy condition is reli-

ably shifted to lower or higher values, respectively. The full posterior distributions of the

population-level parameters and two sets of participant-level parameters are available in

the Supplemental Materials.

Given the low go-omission rate, the BEESTS3 and BEESTS3-GF estimates were vir-

tually identical. The matching go parameters, the stop parameters, and PTF and PGF

were estimated precisely given the available data. As in the simulation study, the mis-

matching go parameters were estimated with quite some uncertainty, especially in the Easy

condition with relatively few go errors. Bayesian p values suggested some evidence for a
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downward shift in the posterior distribution of τ+ in the Easy condition for the BEESTS3

and BEESST3-GF analyses. There was no evidence for condition differences in the other

go parameters.

The BEESTS2 analysis, which ignored go errors, resulted in estimates that mirrored

the results of the parameter recovery studies. In particular, relative to BEESTS3 and

BEESTS3-GF, BEESTS2 underestimated the population mean of τ+ in the Difficult condi-

tion, the condition with high error rate. This underestimation substantially decreased the

overlap between the posteriors of the two difficulty conditions compared to the BEESTS3

and BEESTS3-GF analyses. Moreover, BEESTS2 inflated the uncertainty of the stop esti-

mates, and resulted in overestimation of σS and underestimation of τS and mean SSRT.

The black and gray horizontal lines in Figure 7 show the 95% credible interval of the

posterior distributions of the population standard deviations computed with BEESTS2,

BEESTS3, and BEESTS3-GF in the two difficulty conditions. The population standard

deviation of PTF and PGF were transformed back to the probability scale with a bivariate

inverse-probit transformation.

As before, the BEESTS3 and BEESTS3-GF estimates were virtually identical. The

matching go parameters, the stop parameters, and PTF and PGF were estimated relatively

precisely, whereas the mismatching go parameters were estimated with large uncertainty,

especially in the Easy condition. There was no evidence for condition differences neither in

the matching nor in the mismatching go parameters. Relative to BEESTS3 and BEESTS3-

GF, the BEESTS2 analysis, which ignored go errors, underestimated individual differences

in τ+, and overestimated individual differences in σS and τS . Once again, ignoring go errors

inflated the uncertainty of the stop estimates.

Goodness-of-Fit

We evaluated the absolute goodness-of-fit of the three models using posterior predic-

tive simulations (Gelman, Meng, & Stern, 1996). We did so by comparing the observed

data to predictions based on the joint posterior distributions. As we relied on the entire
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joint posterior to generate predictions, we not only accounted for sampling error, but also

took into account the uncertainty of the parameter estimates.3

For each model, we randomly selected 100 parameter vectors from the joint posterior

distribution of the participant-level model parameters. For each participant, we generated

100 stop-signal data sets using the chosen parameter vectors, the observed SSDs, and the

observed number of go and stop-signal trials. We preformed three sets of posterior predictive

simulations, each focusing on different aspects of the data. The first set focused on the go

RT and signal-respond RT distributions, the second on inhibition functions, and the third

on median signal-respond RTs. Results for the first set are provided in the Supplemental

Materials. The results showed that all three models provided adequate fit to the data,

even the strongly misspecified BEESTS2 model. It appears that BEESTS2’s ex-Gaussian

parameters can be adjusted to provide an accurate description of the observed correct go

RTs even though they were not generated by an ex-Gaussian distribution (i.e., correct go

RTs are generated from a censored ex-Gaussian distribution). Thus, evaluating goodness-

of-fit is not sufficient to detect misspecification, even when error rates are high.

Inhibition Functions. The upper panels of Figure 8 show inhibition functions for

BEESTS3-GF4 (right panel) and BEESTS2 (left panel). The observed and predicted inhi-

bition functions were averaged across participants.5 Red bullets show the observed average

signal-respond rate for each SSD-category. The gray violin plots show the distribution of

the 100 predicted average signal-respond rates.

As predicted by the race model, observed signal-respond rate increased with increasing

SSD. For both models, visual inspection indicated that the predictions adequately approxi-

mated the observed inhibition functions. To quantify goodness-of-fit, we computed posterior

3We cannot formally compare the relative goodness-of-fit of the models because BEESTS2 accounts for
only a subset of the available data: In contrast to BEESTS3-GF, BEESTS2 discards discards go errors and
go omission errors.

4The results of the posterior predictive simulations for BEESTS3 were essentially identical to the
BEESTS3-GF results, and are not presented.

5The SSD-categories were defined in terms of the percentiles of the SSD distribution for each participant,
and then averaged over participants. This method produced an average inhibition function that better
reflected the individual inhibition functions; pooling SSDs over participants before calculating the percentiles,
resulted in much flatter average inhibition functions.
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predictive p values for each SSD-category, estimated from the proportion of averaged poste-

rior predictive samples that were greater than the data average. Extreme p values indicate

that the model fails to account for the observed signal-respond rate. For BEESTS3-GF,

the posterior predictive p values for the seven SSD-categories were 0.60, 0.29, 0.23, 0.06,

0.27, 1.00, and 0.77. With one exception, these p values were all in an acceptable range

(∼ 0.05−0.95)6, indicating that BEESTS3-GF provided a good description of the observed

inhibition functions. For BEESTS2, the p values were 0.64, 0.76, 0.20, 0.07, 0.93, 1.00, and

1.00, indicating a similar pattern with a stronger tendency to over-predict signal-respond

rate at long SSDs. However, as was the case for the CDFs, evaluating goodness-of-fit may

not necessarily be sufficient to detect the misspecified nature of BEESTS2.

Signal-Respond RTs. The lower panels of Figure 8 show the results of the pos-

terior predictive simulations using median signal-respond RT (SRRT). The observed and

predicted SRRTs were averaged across participants.7 Red bullets show the observed aver-

age SRRTs for each SSD-category. The gray violin plots show the distribution of the 100

predicted average SRRTs.

As predicted by the race model, observed SRRT increased with increasing SSD. For

BEESTS3-GF, with the exception of the first and fifth SSD-category, the observed SRRTs

were well within the range of predicted SRRTs. The posterior predictive p values for the

seven SSD-categories were 0, 0.06, 0.91, 0.88, 0.04, 0.10, and 0.11. Similar misfit on short

SSDs—SSDs that typically feature only a small number of signal-respond RTs—has been

reported in numerous studies (e.g., Logan, 1981; Logan, Cowan, & Davis, 1984). These

results indicate that BEESTS3-GF provided an adequate description of observed SRRTs

on the majority of SSDs. For BEESTS2, the p values were 0, 0.01, 0.80, 0.74, 0.02, 0, and

0.08. In addition to the first and the fifth SSD-category, BEESTS2 also failed to account

for observed SRRT in the second, fifth, and sixth SSD-category. Note, however, that the

6Note that the strict cut-off of 0.05 does not apply to posterior predictive p values.
7SSDs were pooled over participants before calculating percentiles, so the same absolute SSD range was

used to get median SSRTs for each participant, and then these SSRTs were averaged over participants. In
contrast to inhibition functions, this method produced an average function that better reflected individual
participants’ functions.
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mis-specified BEESTS2 provided an adequate description of SRRTs on central SSDs, SSDs

that typically contain the largest number of stop-signal trials and are therefore considered

crucial in evaluating the descriptive accuracy of the race model (e.g., Matzke, Love, et al.,

2013).

Discussion

Descriptive statistical models prioritize good measurement properties, such as reliable

parameter estimation, whereas cognitive-process models prioritize a veridical account of la-

tent psychological mechanisms. Both emphases come with costs: the measurement approach

may provide ambiguous inferences about latent processes (e.g., Matzke & Wagenmakers,

2009), whereas the cognitive-process approach can result in models with poorly identi-

fied parameters (e.g., Miletic, Turner, Forstmann, & van Maanen, in press; Schmittmann,

Dolan, Raijmakers, & Batchelder, 2010). Contamination can challenge both approaches,

by compromising the measurement model’s ability to describe the data and provide stable

parameter estimates, and by distorting the cognitive-process model’s account of the latent

psychological processes of interest.

We blended measurement and cognitive-process approaches in order to ameliorate the

surprisingly strong distortions caused by commonly occurring types of contamination in the

stop-signal paradigm. The stop-signal paradigm is one of the most widely used procedures to

measure the psychological construct of response inhibition (Logan & Cowan, 1984; Matzke,

Verbruggen, & Logan, in press). To do so, it relies on a race model in which an inhibitory

stop process or “runner” races with a runner representing the go process that produces a

response. Estimation of the latency of the stop process is particularly challenging because

when the inhibitory runner wins the race no response is made, and so its finishing time is

never directly observed.

We focused on the impact of two processes that are often considered as sources of

contamination in stop-signal data: erroneous go responses (i.e., go errors) and failures

to respond to the go or stop stimulus (i.e., go failures and trigger failures, respectively).
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However, there is no qualitative distinction between contaminants and relevant psychological

processes; whether a process is considered a contaminant can be a matter of perspective, and

sophisticated contaminant models can even become part of the psychologically relevant part

of the model (e.g., Lee, 2011; Vandekerckhove & Tuerlinckx, 2008). For instance, in some

settings, failures to launch the go process (i.e., go failures) can reflect nuisance variables that

occasionally interrupt task-relevant performance, whereas in an other settings, go failures

can be of relevance to a psychological processes of interest (e.g., mind wandering; Cheyne,

Solman, Carriere, & Smilek, 2009) or a clinical condition (e.g., hyperactivity; Tannock et

al., 1989).

To address go failures, we built on the work of Matzke, Love, and Heathcote (2017),

who used a mixture-likelihood approach to augment the already established BEESTS ap-

proach (Matzke, Dolan, et al., 2013) with the ability to account for failures to trigger the

stop process (i.e., trigger failures). Trigger failures can occur at an elevated rate in clinical

populations, and are also present more generally, albeit at a lower rate (Matzke, Hughes,

et al., 2017). We used the same approach to account, for the first time, for go failures

in a parametric model of the stop-signal paradigm. We showed that even moderate rates

of go failures, similar to trigger failures, can markedly distort the primary estimate of in-

hibitory ability provided by the stop-signal paradigm, stop-signal RT (SSRT). Our results

also showed that distortions resulting from go failures and trigger failures can be avoided

by the proposed mixture-likelihood approach. Importantly, our framework has excellent

measurement properties that allow go failures to be included in estimation even when they

are rare.

Similar to go failures, go errors do not necessarily reflect task-irrelevant nuisance vari-

ables. In fact, in the context of standard choice RT tasks, choice errors are often considered

as manifestation of the cognitive process of interest. In particular, evidence-accumulation

models of choice processes (e.g., Brown & Heathcote, 2008; Ratcliff & McKoon, 2008)

treat error rates and error RTs as integral parts of the data that enable identification of

parameters corresponding to latent psychological processes. Unfortunately, these models
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introduce an assumption that makes estimation irregular, namely that the distribution of

finishing times for each runner has a parameter dependent lower bound. This irregular-

ity potentially compromises any estimation method based on likelihoods (Cheng & Amin,

1983), and although often not a problem in standard choice RT tasks, the situation is more

challenging with the partially observed data available in the stop-signal paradigm. For ex-

ample, Logan et al. (2014) required each participant to perform thousands of trials to fit a

cognitive-process model of the stop-signal paradigm in which each runner was modeled by

an evidence-accumulation process.

To address go errors, we took a similar approach to Logan et al. (2014) in terms of

cognitive architecture, with one runner for each possible choice response in the go task and

one runner for the stop process, but we assumed that the finishing time for each runner was

described by an ex-Gaussian distribution. The ex-Gaussian distribution is not realistic in a

process sense, because, unlike the time to accumulate evidence, it is not bounded below by

an unknown constant greater than zero that accounts for the time required to encode evi-

dence from the stimulus. Instead, the ex-Gaussian distribution is a purely statistical model

that aims to describe (as opposed to explain) the effects of experimental manipulations on

the shape of RT distributions (Heathcote et al., 1991; Matzke & Wagenmakers, 2009). We

showed that our approach, which extends the BEESTS model, has excellent measurement

properties and could be successfully applied to an experiment where the number of trials

performed by each participant was representative of the majority of past applications of

the stop-signal paradigm. Although the parameters of the ex-Gaussian distribution can-

not give direct insights into psychological processes, they can be used to test hypotheses

about cognitive architecture as long as predictions are formulated in terms of the statis-

tical components—the parameters—of the distribution (e.g., Andrews & Heathcote, 2001;

Matzke, Hughes, et al., 2017).

Perhaps our most surprising result, and certainly the most important for applications

of the standard stop-signal paradigm, is that even low levels of go errors can compromise

estimation of the distribution of the inhibitory runner, and, in particular, can cause under-
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estimation of SSRTs. The stop-signal paradigm typically relies on an easy choice task, so

error rates are low, but at least when error RTs are slower than correct RTs, such low error

rates do not necessarily provide protection against the distortion of SSRT estimates. Unfor-

tunately, slow errors tend to occur when participants are trying to avoid errors (Ratcliff &

Rouder, 1998), so instructions that encourage accurate responding foster exactly the condi-

tions where the remaining errors are most problematic. Errors can be avoided altogether if

the go task does not involve a choice, but instead only requires a response to the appearance

of the go stimulus (i.e., a response that is not contingent on the identity of the go stimulus).

However, this can lead to anticipatory responses that confound estimation of SSRT. This is

because anticipatory responses effectively give the go runner a head start, and so increase

the stop-signal delay by an unknown amount. Accurate knowledge of the stop-signal delay

is critical to all methods of estimating SSRT.

Our results demonstrated that differences in go-error rates can confound attempts to

measure inhibitory differences. For instance, spurious group differences in SSRT could arise

due to differences in error rates, or, more insidiously, due to differences in the speed of error

responses when error rates are equal. Further, as unmodeled errors inflate the uncertainty

of the stop estimates, it will be more difficult to detect real inhibitory differences when

errors are ignored. We showed that by explicitly modeling go errors we could remove their

influence on estimates of the psychologically relevant processes, and that we could do so

even when error rates were low and parameters related to the error-producing process were

poorly estimated. Importantly, the latter finding indicates that the uncertainty of the error-

related parameters did not propagate to the estimates of main interest, such as SSRT and

trigger-failure rates.

Most importantly, our empirical example demonstrated that our approach can be

successfully applied to stop-signal tasks with high error rates. The standard race model

(Logan & Cowan, 1984) assumes a race between a stop process and a single go process.

However, to properly represent the choice embedded in the go task, a model must postulate

a runner for each response option. Our empirical results clearly showed that applying the
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standard two-runner model to tasks involving difficult choices is not only theoretically, but

also practically, unjustified.

Our generalization of the standard race model to multiple response alternatives en-

ables researchers, for the first time, to use the stop-signal paradigm to investigate in rela-

tively small samples the ability to inhibit difficult as well as easy choices. In this way our

modeling framework extends the applicability of the stop-signal procedure to research areas

in experimental psychology, such as recognition memory, that often rely on difficult choice

task and manipulations that affect error rates (e.g., Kim, Potter, Craigmile, Peruggia, &

Van Zandt, 2017). Moreover, our approach enables researchers to investigate whether con-

clusions about response inhibition derived from easy choice tasks generalize to more difficult

choices that pervade, and which are critical to effective functioning, in daily life.
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Figure 4 . Bias in parameter estimates as a result of go errors. The black horizontal lines
show the 95% credible intervals (CI) of the posterior distributions computed with BEESTS3.
The gray horizontal lines show the 95% CIs of the posterior distributions computed with
the misspecified BEESTS2 that does not account for go errors. The black triangles show
the true values. The difference (in seconds) between the posterior means of the BEESTS2
and BEESTS3 estimates are shown in the upper right corners. Mean SSRT is computed
as µS + τS . The subscripts + and − denote the matching and mismatching go runners,
respectively.
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Figure 5 . Bias in parameter estimates as a result of go failures and go errors. The black
horizontal lines show the 95% credible intervals (CI) of the posterior distributions computed
with BEESTS3-GF. The gray horizontal lines show the 95% CIs of the posterior distribu-
tions computed with the misspecified BEESTS2 that does not account for go errors and go
failures. The black triangles show the true values. The difference (in seconds) between the
posterior means of the BEESTS2 and BEESTS3-GF estimates are shown in the upper right
corners. Mean SSRT is computed as µS + τS . The subscripts + and − denote the matching
and mismatching runners, respectively.
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Figure 6 . 95% credible intervals of the population means for the empirical data obtained with
BEESTS2, BEESTS3, and BEESTS3-GF. The black horizontal lines show the 95% credible
intervals (CI) of the posterior distributions in the Easy condition; the gray horizontal lines
show the 95% CIs in the Difficult condition. The triangles show the posterior medians.
Bayesian p values, computed as the proportion of posterior samples that are lower in the
Difficult (D) than in the Easy (E) condition, are shown in the upper right corners. Mean
SSRT is computed as µS+τS . The subscripts + and− denote the matching and mismatching
runners, respectively.
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Figure 7 . 95% credible intervals of the population standard deviations in the empirical data
obtained with BEESTS2, BEESTS3, and BEESTS3-GF. The black horizontal lines show
the 95% credible intervals (CI) of the posterior distributions in the Easy condition; the
gray horizontal lines show the 95% CIs in the Difficult condition. The triangles show the
posterior medians. Bayesian p values, computed as the proportion of posterior samples
that are lower in the Difficult (D) than in the Easy (E) condition, are shown in the upper
right corners. The subscripts + and − denote the matching and mismatching runners,
respectively.
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Figure 8 . Observed vs. predicted inhibition functions (top panels) and median signal-
respond RTs for BEESTS2 and BEESTS3-GF. In the top panels, red bullets show the
observed average signal-respond rate (p(Respond)) for each SSD-category. In the bottom
panels, red bullets show the observed average median signal-respond RT (SRRT) for each
SSD-category. The gray violin plots show the distribution of the 100 average signal-respond
rates and median SRRTs predicted by the models. The black boxplot in each violin plot
ranges from the 25th to the 75th percentile of the predictions; the white circle represents
the median of the predictions.


