Bayesian Inference for Psychology, Part I11: Parameter
Estimation in Nonstandard Models

Dora Matzke

University of Amsterdam

Udo Boehm

University of Groningen

Joachim Vandekerckhove*
University of California, Irvine

Abstract

We demonstrate the use of three popular Bayesian software packages that
enable researchers to estimate parameters in a broad class of models that are
commonly used in psychological research. We focus on WinBUGS, JAGS,
and Stan, and show how they can be interfaced from R and MATLAB. We
illustrate the use of the packages through two fully worked examples; the
examples involve a simple univariate linear regression and fitting a multi-
nomial processing tree model to data from a classic false-memory exper-
iment. We conclude with a comparison of the strengths and weaknesses
of the packages. Our example code, data, and this text are available via
https://osf.io/ucmaz/.

Introduction

In this special issue, Dienes (this issue) has argued that Bayesian methods are to be
preferred over classical methods, Kruschke (this issue) and Etz and Vandekerckhove (this
issue) have introduced the Bayesian philosophy and associated mathematics, and Love et al.
(this issue; see also Love et al., 2015) and Wagenmakers et al. (this issue) described software
that implements standard hypothesis tests within the Bayesian framework. In the present
paper, we demonstrate the use of three popular software packages that enable psychologists
to estimate parameters in formal models of varying complexity.

The mathematical foundations of Bayesian parameter estimation are not especially
difficult—all that is involved are the elementary laws of probability theory to determine

The authors thank Eric-Jan Wagenmakers for helpful comments during the writing of this article.
DM was supported by a Veni grant #451-15-010 from the Netherlands Organization of Scientific Research
(NWO). UB was supported by an NWO Research Talent grant #406-12-125. JV was supported by NSF
grants #1230118 and #1534472 from the Methods, Measurements, and Statistics panel and John Templeton
Foundation grant #48192. *Corresponding author.


https://osf.io/ucmaz/

PARAMETER ESTIMATION IN NONSTANDARD MODELS 2

the posterior distribution of parameters given the data. Once the posterior distribution has
been defined, the final hurdle of Bayesian parameter estimation is to compute descriptive
statistics on the posterior. In order to obtain these descriptive statistics, one widely ap-
plicable strategy is to draw random samples from the posterior distribution using Markov
chain Monte Carlo methods (MCMC; van Ravenzwaaij, this issue)—with sufficient posterior
samples, descriptives on the sample set can substitute for actual quantities of interest.

In this article, we describe the use of three popular, general-purpose MCMC en-
gines that facilitate the sampling process. We will focus on WinBUGS, JAGS, and Stan,
and illustrate their use for parameter estimation in two popular models in psychology. The
development of these software packages has greatly contributed to the increase in the preva-
lence of Bayesian methods in psychology over the past decade (e.g., Lee & Wagenmakers,
2013). The packages owe their popularity to their flexibility and usability; they allow re-
searchers to build a large number of models of varying complexity using a relatively small
set of sampling statements and deterministic transformations. Moreover, the packages have
a smooth learning curve, are well documented, and are supported by a large community of
users both within and outside of psychology. Their popularity notwithstanding, WinBUGS,
JAGS, and Stan represent only a subclass of the many avenues to Bayesian analysis; the
different avenues implement a trade—off between flexibility and accessibility. At one end of
the spectrum, researchers may use off-the—shelf Bayesian software packages, such as JASP
(Love et al. this issue; see also Love et al., 2015). JASP has an attractive and user—friendly
graphical user interface, but presently it only supports standard hypothesis tests (see also
Morey, Rouder, & Jamil, 2015). At the other end of the spectrum, researcher may imple-
ment their own MCMC sampler, one that is tailored to the peculiarities of the particular
model at hand (e.g., van Ravenzwaaij, this issue; Rouder & Lu, 2005). This approach
provides tremendous flexibility, but it is time—consuming, labor—intensive, and requires ex-
pertise in computational methods. General-purpose MCMC engines—such as WinBUGS,
JAGS, and Stan—are the middle—of-the-road alternatives to Bayesian analysis that provide
a large degree of flexibility at a relatively low cost.

We begin with a short introduction of formal models as generative processes using a
simple linear regression as an example. We then show how this model can be implemented in
WinBUGS, JAGS, and Stan, with special emphasis on how the packages can be interacted
with from R and MATLAB. We then turn to a more complex model, and illustrate the
basic steps of Bayesian parameter estimation in a multinomial processing tree model for
a false-memory paradigm. The WinBUGS, JAGS, and Stan code for all our examples
is available in the Supplemental Materials at https://osf.io/ucmaz/. The discussion
presents a comparison of the strengths and weaknesses of the packages and provides useful
references to hierarchical extensions and Bayesian model selection methods using general—
purpose MCMC software.

An Introduction with Linear Regression
Specification of Models as Generative Processes

Before we continue, it is useful to consider briefly what we mean by a formal model: A
formal model is a set of formal statements about how the data come about. Research data
are the realizations of some stochastic process, and as such they are draws from some ran-
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dom number generator whose properties are unknown. In psychology, the random number
generator is typically a group of randomly selected humans who participate in a study, and
the properties of interest are often differences in group means between conditions or pop-
ulations (say, the difference in impulsivity between schizophrenia patients and controls) or
other invariances and systematic properties of the data generation process. A formal model
is an attempt to emulate the unknown random number generator in terms of a network of
basic distributions.

Consider, for example, simple linear regression, with its three basic assumptions of
normality, linearity, and homoskedasticity. This common technique implies a stochastic
process: the data are assumed to be random draws from a normal distribution (normality),
whose mean is a linear function of a predictor (linearity), and whose variance is the same
(homoskedasticity) for all units, where “units” can refer to participants, items, conditions,
and so on. A regression model in which we predict y from x may be written as a follows:

Yilps, ™~ N (i, 7) (1)
wilB1, Bo i = P1+ Pawx;. (2)

The tilde (~) may be read as “is a random sample from”. These two statements encode
the assumptions of normality (Eq. 1), homoskedasticity across units i (Eq. 1), and linearity
(Eq. 2). Usually omitted, but implied, is that these statements hold true for all values that
the subscript i can take:

Vi, i=1,...,N. (3)

We use 7 to indicate the precision—the inverse of the variance—because that is how Win-
BUGS and JAGS parameterize the Gaussian distribution.

In the Bayesian framework, we must further specify our prior assumptions regarding
the model parameters (31, (2, and 7. Let us use the following' forms for the priors:

B~ N(0,0.001) (4)
Bs ~ N(0,0.001) (5)
7 ~ T(0.001,0.001). (6)

This simple model also helps to introduce the types of variables that we have at our
disposal. Variables can be stochastic, meaning that they are draws from some distribu-
tion. Stochastic variables can be either observed (i.e., data) or unobserved (i.e., unknown
parameters). In this model, y, 81, B2, and 7 are stochastic variables. Variables can also
be deterministic, which means their values are completely determined by other variables.
Here, p; is determined as some combination of 81, 2, and x;. N is a constant.

Taken together, a Bayesian model can be thought of as a data—generation mechanism
that is conditional on parameters: Bayesian models make predictions. In particular, the
sampling statements— including the priors—in Equations 1, 4, 5, and 6 and the determin-
istic transformation in Equation 2, fully define a generative model; this set of statements

'We chose values for the parameters of the prior distributions that fit the introductory example. In
general, these values should depend on the application at hand (see Vanpaemel & Lee, this issue; and
Morey, this issue).
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Table 1
Example data set for linear regression. Attendance at each session of a conference, as

predicted by the organizers (left) and as observed (middle), with the corresponding “S—style”
data file (right).

Expected (z) Observed (y)

51 24 32 33 35 32 x <- c(51, 44, 57, 41, 53, 56,
44 21 42 55 18 31 49, 58, 50, 32, 24, 21,
57 23 27 49 14 37 23, 28, 22, 30, 29, 35,
41 28 38 56 31 17 18, 25, 32, 42, 27, 38,
53 22 32 58 13 11 32, 21, 21, 12, 29, 14)
56 30 21 61 23 24 y <- c(33, 55, 49, 56, 58, 61,
49 29 21 46 15 17 46, 82, 53, 33, 35, 18,
58 35 12 82 20 5 14, 31, 13, 23, 15, 20,
50 18 29 53 20 16 20, 33, 32, 31, 37, 17,
32 25 14 33 33 7 11, 24, 17, 5, 16, 7)

fully defines the model because they are all that is needed to generate data from the model.
The generative model thus formalizes the presumed process by which the data in an empir-
ical study were generated.

A Toy Data Set

As our introductory example, we will use a small data set containing (a) the observed
number of attendees at each session of a recent conference (the data y) and (b) the number
of attendees that was expected by the organizers (the predictor ). Table 1 shows the data
set.

Implementing a Generative Model

The generative specification is the core of the BUGS modeling language (Lunn,
Thomas, Best, & Spiegelhalter, 2000) that is used by WinBUGS and dialects of which
are used by JAGS and Stan. In all of these programs, the model definition consists of a
generative specification. In many cases, the model code is almost a point—to—point transla-
tion of a suitable generative specification. Consider this BUGS implementation of the linear
regression model:

model {

# linear regression

for (i in 1:N) { # Eq. 3
y[i] ~ dnorm(mul[i], tau) # Eq. 1
mul[i] <- beta[1] + beta[2] * x[i] # Eq. 2

}

# prior definitions

beta[1] ~ dnorm(0, 0.001) # Eq. 4

betal[2] ~ dnorm(0, 0.001) # Eq. 5

tau ~ dgamma(0.001, 0.001) # Eq. 6



PARAMETER ESTIMATION IN NONSTANDARD MODELS

The parameter beta[1] denotes the intercept (i.e., observed number of attendees for 0
expected attendees), beta[2] denotes the slope of the regression line (i.e., the increase in the
observed number of attendees associated with a one—unit increase in the expected number
of attendees), and tau represents the inverse of the error variance. This short piece of code
maps exactly to the generative model for linear regression that we specified. Of course,
since there is much more freedom in mathematical expression than there is in computer
code, the point—to—point translations will not always be perfect, but it will typically be an
excellent starting point.

In the code, deterministic variables are followed by the <- assignment operator. For
instance, the line mu[i] <- beta[1] + betal[2] * x[i] specifies that the mu parameters
are given by a linear combination of the of the stochastic beta variables and the observed
data x. The # symbol is used for comments. The complete list of distributions, functions,
logical operators, and other programming constructs that are available in WinBUGS, JAGS,
and Stan, is listed in their respective user manuals. BUGS is a declarative language, which
means that the order of the statements in the model file is largely irrelevant. In contrast, in
Stan, the order of statements matters. With the model translated from formal assumptions
to BUGS language, the next step is to interact with the software and sample from the
posterior distribution of the parameters.

WinBUGS Graphical User Interface

WinBUGS (Bayesian inference Using Gibbs Sampling for Windows; Lunn et al., 2000;
Lunn, Spiegelhalter, Thomas, & Best, 2009; Spiegelhalter, Thomas, Best, & Lunn, 2003; for
an introduction see Kruschke, 2010, Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012,
and Lee & Wagenmakers, 2013) is a stand-alone piece of software that is freely available
at http://www.mrc-bsu.cam.ac.uk/bugs/. In this section we give a brief description of
the WinBUGS graphical user interface (GUI) using the linear regression model introduced
above; later we illustrate how WinBUGS can be called from other software, such as R and
MATLAB. For a detailed step—by—step introduction to the WinBUGS GUI, the reader is
referred to Lee and Wagenmakers (2013).

To interact with WinBUGS via the GUI, users have to create a number of files. First,
there is a model file that describes the generative specification of the model, second is the
data file that contains the raw data, and third is an initial values file that contains some
starting values for the sampling run.

Panel A in Figure 1 shows the model file linreg_model.txt that describes the gen-
erative model for the linear regression example. Panel B shows the data file data.txt.
The data specification follows S-plus object notation, where vectors are encapsulated in the
concatenation operator c(...) and matrices are defined as structures with a dimension
field, such as structure(.Data = c(...),.Dim = c(R, C)), where R stands for the num-
ber of rows and C for the number of columns. In the linear regression example, the data
consist of the vector of observations y corresponding to the observed number of attendees,
a vector of observations x corresponding to the predicted number of attendees, and a scalar
N corresponding to the number of sessions.

The same data format is used to store the (optional, but strongly recommended) set
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of initial values for the unobserved stochastic variables. If initial values are not supplied,
WinBUGS will generate these automatically by sampling from the prior distribution of the
parameters. Automatically generated initial values can provide poor starting points for the

sampling run and may result in numerical instability. If multiple MCMC chains

are run in

order to diagnose convergence problems, we encourage users to create a separate file for each
set of initial values. As shown in Panel C in Figure 1, we will run three chains, each with a
different set of initial values, and store these in initsl.txt, inits2.txt, and inits3.txt.

16: WinBUGS14
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Figure 1. The WinBUGS graphical user interface. Panel A shows the model file; Panel B

shows the data file; Panel C shows the initial values; Panel D shows the Specification Tool
window; Panel E show the status bar.

Once the model

file, the data file, and the files containing the initial values are created,

follow the steps outlined below to sample from the posterior distribution of the parameters.

1. Load the model

file and check the model specification. To open the model file, go to

File -> Open and select linreg_model.txt in the appropriate directory. To check
the syntax of the model specification, go to Model -> Specification and open the
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Specification Tool window (Panel D in Figure 1), activate the model file by clicking
inside linreg_model.txt, click on check model, and wait for the message “model is
syntactically correct” to appear in the status bar.

2. Load the data file. To open the data file, go to File -> Open and select data.txt
in the appropriate directory. To load the data, activate the data file, click on load
data in the Specification Tool window, and wait for the message “data loaded” to
appear in the status bar.

3. Compile the model. To compile the model, specify the number of MCMC chains in the
box labeled num of chains in the Specification Tool window, click on compile,
and wait for the message “model compiled” to appear in the status bar. In the linear
regression example, we will run three MCMC chains, so we type “3” in the num of
chains box.

4. Load the initial values. To open the file that contains the initial values for the first
chain, go to File -> Open and select initsl.txt in the appropriate directory. To
load the first set of initial values, activate initsl.txt, click on load inits in the
Specification Tool window, and wait for the message “chain initialized but other
chain(s) contain uninitialized variables”. Repeat these steps to load the initial values
for the second and third MCMC chain. After the third set of initial values is loaded,
wait for the message “model is initialized” to appear in the status bar (Panel E in
Figure 1).

5. Choose the output type. To ensure that WinBUGS pastes all requested output in
a single user—friendly log file, go to Output -> Output optioms, open the Output
options window, and select the log option (Panel A in Figure 2).

6. Specify the parameters of interest. To specify the parameters that you want to draw
inference about, go to Inference -> Samples, open the Sample Monitor Tool win-
dow, type one by one the name of the parameters in the box labeled node, and click
on set (Panel B in Figure 2). In the linear regression example, we will monitor
the betal[1], beta[2], and tau parameters. To request dynamic trace plots of the
progress of the sampling run, select the name of the parameters in the drop—down
menu in the Sample Monitor Tool window and click on trace. WinBUGS will start
to display the dynamic trace plots once the sampling has begun.

7. Specify the number of recorded samples. To specify the number of recorded samples
per chain, fill in the boxes labeled beg, end, and thin in the Sample Monitor Tool
window. In our linear regression example, we will record 500 posterior samples for
each parameter. We will discard the first 500 samples as burn—in and start recording
samples from the 501" iteration (beg=501); we will draw a total of 1,000 samples
(end=1000); and we will record each successive sample without thinning the chains
(thin=1).

8. Sample from the posterior distribution of the parameters. To sample from the poste-
riors, go to Model -> Update, open the Update Tool window (Panel C in Figure 2),
fill in the total number of posterior samples per chain (i.e., 1,000) in the box labeled
updates, specify the degree of thinning (i.e., 1) in the box labeled thin, click on
update, and wait for the message “model is updating” to appear in the status bar.

9. Obtain the results of the sampling run. To obtain summary statistics and kernel den-
sity plots of the posterior distributions, select the name of the parameters in the drop-
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down menu in the Sample Monitor Tool window and click on stat and density.

WinBUGS will print all requested output in the log file (Panel D in Figure 2). The

figures labeled “Dynamic trace” show trace plots of the monitored parameters; the

three MCMC chains have mixed well and look identical to one another, indicating
that the chains have converged to the stationary distribution and that the successive
samples are largely independent. The table labeled “Node statistics” shows summary
statistics of the posterior distribution of the parameters computed based on the sam-
pled values. For each monitored parameter, the table displays the mean, the median,
the standard deviation, and the upper-and lower bound of the central 95% credible
interval of the posterior distribution. The central tendency of the posterior, such as
the mean, can be used as a point estimate for the parameter. This 95% credible in-
terval ranges from the 2.5 to the 97.5t" percentile of the posterior and encompasses

a range of values that contains the true value of the parameter with 95% probability;

the narrower this 95% credible interval, the more precise the parameter estimate. The

figures labeled “Kernel density” show density plots of the posterior samples for each
parameter.

As the reader might have noticed by now, running analyses via the GUI is inflexible
and labor-intensive; the GUI does not allow for data manipulation and visualization and
requires users to click through a large number of menus and options. Later we therefore
illustrate how WinBUGS can be called from standard statistical software, such as R and
MATLAB.

JAGS and Stan Command-Line Interface

Both JAGS and Stan are based on a command-line interface. Although this type of
interface has fallen out of fashion, and it is strictly speaking not required to use either of
these programs, we introduce this low-level interface here—using JAGS as the example—in
order to provide the reader with an appreciation of the inner workings of other interfaces.
Readers who are not interested in this can skip to either one of the next two sections.

Before launching the program, it is again useful to make a set of text files containing
the model, data, and initial values. The model file should contain the code in the listing
above; for this example, we saved the model in linreg_model.txt.

The data file should contain the data, formatted as in the right column of Table 1. The
data format in Table 1 is sometimes referred to as “S—style”; each variable name is given in
double quotation marks, followed by the assignment operator <- and the value to be assigned
to the variable. Vectors are encapsulated in the concatenation operator c(...) and matri-
ces are defined as structures with a dimension field: struct(c(...),.Dim=c(R,C)), where
the RxC matrix is entered in column-major order. Our data file is called 1inreg_data.txt.

The same data format is used to store the (optional, but strongly recommended) set
of initial values. For at least some of the unknowns nodes (i.e., nodes which in the BUGS
code are followed by the sampling operator ~), initial values should be provided. If multiple
chains will be run, one unique file for each chains is recommended. Our initial values files
are called inits1.txt, inits2.txt, and inits3.txt.

Once all these files are in place, start JAGS by opening a command window and
typing jags. Below is the complete interaction with JAGS, in which user input is preceded
by the period (.) prompt. Comments are preceded by a pound sign #.
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Figure 2. The WinBUGS gmplﬁcal user interface continued. Panel A shows the Output
Options window; Panel B shows the Sample Monitor Tool window; Panel C shows the
Update Tool window; Panel D shows the log file.

~$ jags

Welcome to JAGS 3.4.0 on Mon Jul 20 14:02:50 2015

JAGS is free software and comes with ABSOLUTELY NO WARRANTY
Loading module: basemod: ok

Loading module: bugs: ok

model in "linreg_model.txt" # loads the model
data in "linreg_data.txt" # loads the data
Reading data file linreg_data.txt
compile, nchains(3) # compiles the model for 3 chains

Compiling model graph
Resolving undeclared variables
Allocating nodes
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Graph Size: 117

. parameters in "initsl.txt" # loads initial values for chain 1
Reading parameter file initsl.init

. parameters in "inits2.txt" # loads initial values for chain 2
Reading parameter file inits2.txt

. parameters in "inits3.txt" # loads initial values for chain 3
Reading parameter file inits3.txt

. initialize # sets up the sampling algorithms
Initializing model

. update 500 # draws 500 samples for burn-in
Updating 500

————————————————————————————————————————————————— | 500

stk ok ok ok ok ok sk ok sk sk sk sk sk sk sk sk ok sk ok ok kokokokokokok ook ko sk sk sk sk sk sk sk skskskskokokokok - 1007

. monitor set beta, thin(1) # indicates a variable to save

. monitor set tau, thin(1) # indicates a variable to save

. update 500 # draws 500 samples from posterior
Updating 500

————————————————————————————————————————————————— | 500

skeokok ok ok ok ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk ok k kokokokokokokokokoksk sk sksksk sk sk skskskkkkk ok ok 1007

. coda *, stem(’samples_’) # saves posterior samples to files
. exit # exits

This will produce a set of files starting with samples_chain and an index file starting
with samples_index. These files can be loaded into a spreadsheet program like Microsoft
Excel or LibreOffice Calc (or command line tools like awk and perl) to compute summary
statistics and do inference. However, this approach is both tedious and labor—intensive, so
there exist convenient interfaces from programming languages such as R, MATLAB, and
Python.

Working from MATLAB

MATLAB is a commercial software package that can be obtained via http://www
.mathworks.com/. Just like Python or R, MATLAB can be used to format data, generate
initial values, and visualize and save results of a sampling run. In this section we outline
how users can interact with WinBUGS, JAGS, and Stan using MATLAB. R users can skip
this section; in the next sections, we will describe how to use R for the same purposes.

To interact with the three computational engines from MATLAB, we will use the
Trinity toolbox (Vandekerckhove, 2014), which is developed as a unitary interface to the
Bayesian inference engines WinBUGS, JAGS, and Stan. Trinity is a work—in—progress
that is (and will remain) freely available via http://tinyurl.com/matlab-trinity. The
MATLAB code needed to call these three engines from Trinity is essentially identical.

To start Trinity, download the toolbox, place it in your MATLAB path, and then
call:

>> trinity install
>> trinity new
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The first line will cause the Trinity files to be detected by MATLAB and the second line
will create a bare-bones MATLAB script with programming instructions. For example, one
line reads:?

% Write the model into a variable (cell variable)

model = {
%$ MODEL GOES HERE $Y
};

The user can then enter the model code directly into the MATLAB script, using cell string
notation (note the single quotes around each line):

model = {
‘model {’
g # linear regression’
» for (i in 1:N) {°
’ y[i] ~ dnorm(mulil, tau)’
) mu[i] <- betal[l] + betal[2] * x[i]’
) })
’ # prior definitions’
) beta[1] ~ dnorm(0, 0.001)°
> betal[2] ~ dnorm(0, 0.001)’
> tau ~ dgamma(0.001, 0.001)°
7}7
};

It is also possible to write the model in a separate file and provide the file name here instead
of the model code. One advantage of writing model code directly into the MATLAB script
is that the script can be completely self-contained. Another is that the model code, when
treated as a MATLAB variable, could be generated on—thefly if tedious or repetitive code
is required to define a model or if the model file needs to be adapted dynamically (e.g., if
variable names need to change from one run to another).

Next, we need to list the parameters of interest (i.e., for which variables we should
save posterior samples). For our current application we could list all variables but choose to
omit mu (which is particularly useful if N is large and the vector mu takes up much memory):

% List all the parameters of interest (cell variable)
params = {
’beta’ ’tau’

};

Next, we collect the data variables that MATLAB will send to the computational
engine. Again, it is possible to do this by providing the name to a properly formatted data
file, but it is more practical to make a MATLAB variable that contains the data. To collect
the data, make a structure variable as follows (for the example, x and y should first be
defined with the values given in Table 1):

2Tt is likely that the exact appearance of this code will vary a little over successive versions of the Trinity
toolbox, but the requirements will remain broadly the same.
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% Make a structure with the data (note that the name of the field needs to
% match the name of the variable in the model)
data = struct(...

’x?, X,

RARINA

’N’, numel(x)

)

Each field name (in single quotes) is the name of the variable as it is used in the model
definition.® Note that Trinity will not permit the model code to have variable names
containing underscores, as this symbol is reserved for internal use. Following each field name
is the value that this variable will take; this value is taken from the MATLAB workspace,
so it can be an existing variable with any name, or it can be a MATLAB expression that
generates the correct value, as we did here with N. Of course, before making this data
structure, the data may need to be parsed, read into MATLAB, and possibly pre—processed
(outliers removed, etc.).

The final block to complete is a little more involved and requires understanding of
MATLAB’s anonymous functions construct. Anonymous functions are in-line function
definitions that are saved as variables. A typical command to define an anonymous function
has the following structure:

©

——
anonfun = @(a,b) 3*xa + sqrt(b);
—_—

In this example, anonfun (part (1)) is the name given to the new function—this can be any-
thing that is a valid MATLAB variable name. Part (2) indicates the start of an anonymous
function with the @ symbol and lists the input variables of the function between parentheses.
Part (3) is a single MATLAB expression that returns the output variable, computed from
inputs a and b. This anonymous function could be invoked with: anonfun(1,4), which
would yield 5.

It is possible for an anonymous function to take no (zero) input arguments. For
example, nrand = @()-rand will create a function called nrand that generates uniformly
distributed variates between —1 and 0. In order to supply the computational engine with
initial values for the sampling process, we will define an anonymous function that draws a
sample from the prior distribution of all or part of the parameter set. An example is:

% Write a function that generates a structure with one random value for
%» each parameter in a field

3Because MATLAB does not differentiate between vectors and single—column or single-row matrices, but
some of the computational engines do, it is sometimes convenient to pass variables explicitly as a matrix
or explicitly as a vector. For this situation, Trinity allows the flags AS_MATRIX_ and AS_VECTOR_ to be
prepended to any variable name. A common situation in which this is useful is when matrix multiplication
is applied in the model, but one of the matrices has only one column. JAGS, for example, will treat that
matrix as a vector and throw a “dimension mismatch” error unless the flag is applied. In our example, the
data structure would then be defined as struct (’AS_MATRIX_x’, x).
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generator = @()struct(...

’beta’ , randn(2, 1) * 10 + O,

’tau’ , rand * 5 ...

);
Here, a structure is generated with one field for each parameter, and a random initial value
for each. The initial value for each of the two betas is generated from a normal distribution
with mean 0 and standard deviation 10, and tau is generated from a uniform distribution
between 0 and 5. The function generator () can now be called from MATLAB:

>> generator ()

ans =
beta: [2x1 double]
tau: 0.6349

Note that either of these variables can be validly omitted, but at least one must be given.
If one of the random number generators draws a value that is not allowed by the model
(e.g., where the prior or likelihood is zero), the engines will throw errors (e.g., JAGS will call
them “invalid parent values”). If no initial values are given, both the engine and Trinity will
proceed without error, but in some engines all MCMC' chains will have the same starting
point, rendering any convergence statistics invalid. It is always prudent to provide at least
some initial values. Initial values can be scalars, vectors, or matrices, as needed.

Once all of these variables are prepared, they can be handed off to the main function
of Trinity, callbayes. This function can take a large number of input fields to control the
behavior of the engine, which can be WinBUGS, JAGS, or Stan (WinBUGS is currently
limited to Windows operating systems, and Stan is limited to unix—based systems). To
select the computational engine, set engine to ’bugs’, ’jags’, or ’stan’. (Note that if
Stan is selected, the model code should be changed to the Stan code provided in the next
section.) More detail regarding the use of callbayes can be found in its help documentation
(doc callbayes). These default inputs are generally sufficient:

[stats, chains, diagnostics, info] = callbayes(engine,
’model’ , model , ... % the model as a cell
’data’ s data , ... % the data as a struct
’outputname’ , ’samples’ , ... % any character string
’init’ , generator , ... % an anonymous function
’datafilename’ , proj_id , ... % any character string
’initfilename’ , proj_id , ... % any character string
’scriptfilename’ , proj_id , ... % any character string
’logfilename’ , proj_id , ... % any character string
’nchains’ , 3 , ... % the number of chains
’nburnin’ , 1000 , ... % the burnin period
’nsamples’ , 10000 , ... % how many saved samples?
’monitorparams’ , params , ... % the cell string
>thin’ s 1, ... % the thinning factor
’workingdir’ s [’/tmp/’ proj_idl , ... % a temp dir
’verbosity’ s 0 , ... % higher is more verbose

’saveoutput’ , true , ... % save JAGS log file?

13
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18
19

’parallel’ , false , ... % use multiple cores?
’modules’ , {’dic’} ); % use extra modules?

Often, many of these settings can be omitted, and Trinity will choose default values
that are appropriate for the engine and operating system. The first input selects the engine.
The various ’*filename’ inputs on lines 6-9 serve to organize the temporary files in a
readable fashion, so that the user can easily access them for debugging or reproduction
purposes.”

The input values on lines 10-14 determine how many independent chains should be
run, how many samples should be used for burn—in, how many samples should be saved per
chain, which parameters should be saved, and by how much the chains should be thinned
(n means every n'" sample is saved). Line 15 determines a working directory, which is
currently set to a value that will work well on unix systems; Windows users might want to
change this. Line 16 determines how much output Trinity gives while it is running. Line 17
decides whether the text output given by the engine should be saved.

Line 18 determines if parallel processing should be used—if this is set to true, all the
chains requested on line 10 will be started simultaneously.” Note that for complex models,
this may cause computers to become overburdened as all the processing power is used up by
Trinity. Users who want to run multiple chains than they have computing cores available
can use the optional input pair >numcores’, C, ..., where C is the maximum number of
cores Trinity is allowed to use. Finally, line 19 lists optional extra modules (JAGS only). By
default, the dic module is called because this facilitates tracking of the model deviance as
a variable. Users with programming experience can create their own modules for inclusion
here (e.g., wiener’; see Wabersich & Vandekerckhove, 2014).

A successful callbayes call will yield up to four output arguments. stats contains
summary statistics for each saved parameter (mean, median, standard deviation, and the
mass of the posterior below 0). These can be used for easy access to parameter estimates.
chains contains all the posterior samples saved. The usefulness of this is discussed below.
diagnostics provides quick access to the convergence metric R and the number of effective
samples (Gelman & Rubin, 1999). info gives some more information, in particular the
model variable and a list of all the options that were set for the analysis (combining the
user—provided and automatically generated settings).

The most important output variable is chains, which contains the saved posterior
samples that are the immediate goal of the MCMC procedure. This variable is used by
practically all functions in Trinity that do post—processing, summary, and visualization.
The default Trinity script contains the line grtable(chains, 1.05). The grtable function
prints a table with a quick overview of the sampling results, such as the posterior mean, the

4When using JAGS or Stan, the working directory will contain a file with a cryptic name that starts with

tp and ends in a sequence of random characters, with no file extension. This is the entry point script that
Trinity uses to call the engine. It can be used to reproduce the analysis outside of MATLARB, if desired—the
files in that directory that do not have the .txt extension are all that is needed for reproduction. The *.txt
files are output, containing the posterior samples and the log file. When using WinBUGS, data files, initial
values files, and model files will be available in the working directory where they can be accessed with the
WinBUGS GUI

®On unix systems, this requires the installation of the free program GNU parallel (Tange, 2011). On
Windows systems, it currently requires the MATLAB Parallel Computing Toolbox, but we are working to
resolve this dependency.
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Figure 3. Results of the linear regression example. The best fitting regression line is very
close to the first bisector y = .

number of samples drawn, the number of effective samples (n_eff) and the R convergence
metric. The second input to grtable can be either a number, in which case only parameters
which an R larger than that number will be printed (or a message that no such parameters
exist); or it can be a string with a regular expression, in which case only parameters fitting
that pattern will be shown.®

Another useful function that relies on the chains variable and on regular expressions
is codatable, which prints a table with user—selected statistics for selected parameters. For
example, to see the posterior mean and standard deviation of the beta parameters:

>> codatable(chains, ’beta’, @mean, @std)

Estimand mean std
beta_1 -6.937 5.624
beta_2 1.139 0.1554

Finally, Trinity contains a set of functions for visualizing MCMC chains and posterior
distributions, but for the present application, a simple scatter plot and regression line
suffice (Figure 3):

scatter(x, y)
line(xlim, stats.mean.beta_1 + stats.mean.beta 2 * xlim)

Note that the posterior distributions of the regression parameters contain the first bisector
(61 ~ 07 52 ~ 1)

SRegular expressions are an extremely powerful and flexible programming constructs. To give some
examples: if the expression is ’beta’, all parameters with the string beta in their name will be shown. If it
is >“beta’, only parameters starting with that string will be shown. *beta$’ will show only those ending in
that string. ’.’ will match any variable, and ’be|ta’ will match anything containing be or ta. A complete
overview to regular expressions in MATLAB can be found via the documentation for the function regexp.

15
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Working from R

R (R Development Core Team, 2004) is a free statistical software package that can
be downloaded from http://www.r-project.org/. In this section, we outline how users
can interact with WinBUGS, JAGS, and Stan using R. As with MATLAB, using R to
run analyses increases flexibility compared to working with these Bayesian engines directly;
users can use R to format the data, generate the initial values, and visualize and save the
results of the sampling run using simple R commands.

Interacting with WinBUGS: R2WinBUGS

To interact with WinBUGS, users have to install the R2WinBUGS package (Sturtz,
Ligges, & Gelman, 2005). The R2WinBUGS package allows users to call WinBUGS from
within R and pass on the model specification, the data, and the initial values to WinBUGS
using the bugs () function. WinBUGS then samples from the posterior distribution of the
parameters and returns the MCMC samples to R.

The following R code can be used to sample from the posterior distribution of the
model parameters in the linear regression example using WinBUGS.

# set working directory

setwd("C:/Dropbox/My Documents/Bayesian_estimation/WinBUGS")
# load R2WinBUGS package

library (R2WinBUGS)

The setwd() function specifies the working directory where R will look for the model file
and will save the results. The 1ibrary() function loads the R2WinBUGS package.

# create vector that contains the expected number of attendees
x <- c(b1, 44, 57, 41, 53, 56, 49, 58, 50, 32,

24, 21, 23, 28, 22, 30, 29, 35, 18, 25,

32, 42, 27, 38, 32, 21, 21, 12, 29, 14)
# create vector that contains the observed number of attendees
y <- c(33, 55, 49, 56, 58, 61, 46, 82, 53, 33,

35, 18, 14, 31, 13, 23, 15, 20, 20, 33,

32, 31, 37, 17, 11, 24, 17, 5, 16, 7)
# create a scalar that contains the number of sessions
N <- 30
# create a list that contains the data and will be passed on to WinBUGS
mydata <- list("y", "x", "N")

Here we create a list named mydata that contains the data (i.e., x, y, and N) and will be
passed on to WinBUGS.

# create the initial values for the unobserved stochastic nodes
myinits=function(){

list(beta=rnorm(2, 0, 10), tau=runif(1, 0, 5))
}

Here we create the initial values for the unobserved stochastic nodes. The initial values for
betal[1] and beta[2] are random deviates from a zero—centered normal distribution with


http://www.r-project.org/
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a standard deviation of 10 generated using the rnorm() function. The initial values for
tau are generated from a uniform distribution with lower bound of 0 and upper bound of
5 using the runif () function. The code generates a unique set of initial values for each
chain.

# specify parameters of interest
myparameters <- c("beta", "tau")

Here we create a vector that contains the names of the model parameters that we want to
draw inference about.

# call WinBUGS

samples <- bugs(data=mydata, inits=myinits, parameters=myparameters,
model.file="linreg_model.txt", n.chains=3, n.iter=1000, n.burnin=500,
n.thin=1, DIC=FALSE, bugs.directory="C:/WinBUGS14", codaPkg=FALSE,
debug=FALSE)

The bugs () function calls WinBUGS and passes on the model specification, the data, and
the start values using the following arguments:

- data specifies the list object that contains the data.

- inits specifies the list object that contains the initial values.

- parameters specifies the vector that lists the names of the parameters of interest.

- model.file specifies the text file that contains the model specification. The model.file
argument can also refer to an R function that contains the model specification that is
written to a temporary file.

- n.chain specifies the number of MCMC chains.

- n.iter specifies the total number of samples per chain.

- n.burnin specifies the number of samples per chain that will be discarded at the be-
ginning of the sampling run.

- n.thin specifies the degree of thinning.

- DIC specifies whether WinBUGS should return the Deviance Information Criterion
(DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002) measure of model comparison.

- bugs.directory specifies the location of WinBUGS14.exe.

- codaPkg specifies the output that is returned from WinBUGS. Here codaPkg is set to
FALSE to ensure that WinBUGS returns the posterior samples in the samples object.
If codaPkg is set to TRUE, WinBUGS returns the paths to a set of files that contains
the WinBUGS output.

- debug specifies whether WinBUGS will be automatically shut down after sampling.
Here debug is set to FALSE to ensure that WinBUGS shuts down immediately after
sampling and returns the results to R. If debug is set to TRUE, WinBUGS will not
shut down after sampling and will display summary statistics and trace plots of the
monitored parameters. As the name suggests, setting debug to TRUE can also provide—
often cryptic—cues for debugging purposes.

For more details on the use of bugs(), the reader is referred to the help documentation.

Once WinBUGS has finished sampling, it returns the posterior samples to R in the
samples object. The results of the sampling run can be accessed, visualized, and summa-
rized using, for instance, the following code:

17
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# display the first 15 samples in the first chain for tau
samples$sims.array[1:15,1,"tau"]

# plot a histogram of the posterior distribution of tau
hist(samples$sims.arrayl[,,"tau"])

# display summary statistics of the posterior distributions
print (samples)

The posterior samples for beta[1], beta[2], and tau are stored in samples$sims.array
(or samples$sims.list). The hist() function can be used to plot histograms of the
posterior distribution of the parameters based on the samples values. The print (samples)
command displays a useful summary of the posterior distribution of each model parameter,
including the mean, the standard deviation, and the quantiles of the posteriors, and (if
multiple chains are run) the R convergence metric.

Interacting with JAGS: R2jags

To interact with JAGS, users have to install the R2jags package (Su & Yajima,
2012). The R2jags package allows users to call JAGS from within R and pass on the model
specification, the data, and the start values to JAGS using the jags () function. JAGS then
samples from the posterior distribution of the parameters and returns the MCMC samples
to R.

The R code for running the MCMC routine for the linear regression example in
JAGS is similar to the R code for running the WinBUGS analysis outlined in the previous
section, with the following modifications. Instead of loading the R2WinBUGS package, load
the R2jags package by typing:

# load R2jags
library(R2jags)

Once the mydata, myinits, and myparameters objects are created in R, use the jags()
function to call JAGS and sample from the posterior distribution of the parameters:

# call JAGS

samples <- jags(data=mydata, inits=myinits,
parameters.to.save=myparameters, model.file="linreg model.txt",
n.chains=3, n.iter=1000, n.burnin=500, n.thin=1, DIC=FALSE)

The jags() function takes as input the following arguments:

- data specifies the list object that contains the data.

- inits specifies the list object that contains the initial values.

- parameters.to.save specifies the vector that lists the names of the parameters of
interest.

- model.file specifies the file that contains the model specification. The model.file
argument can also refer to an R function that contains the model specification that is
written to a temporary file.

- n.chains specifies the number of MCMC chains.

- n.iter specifies the total number of samples per chain.

- n.burnin specifies the number of samples per chain that will be discarded at the be-
ginning of the sampling run.
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- n.thin specifies the degree of thinning.
- DIC specifies whether JAGS should return the DIC.
For more details on the use of jags(), the reader is referred to the help documentation.
Once JAGS has finished sampling, it returns the posterior samples to R in the samples
object. The results of the sampling run can be accessed, visualized, and summarized using,
for instance, the following code:

# display the first 15 samples in the first chain for tau
samples$BUGSoutput$sims.array[1:15,1,"tau"]

# plot a histogram of the posterior distribution of tau
hist (samples$BUGSoutput$sims.arrayl[,,"tau"])

# display summary statistics of the posterior distributions
print (samples)

# plot traceplot; press ENTER for page change

traceplot (samples)

The posterior samples for betal[l], betal[2], and tau are stored in
samples$BUGSoutput$sims.array (or samples$BUGSoutput$sims.list), and can
be visualized and summarized using the hist() and print() functions, respectively. As
the name suggests, the traceplot(samples) command displays trace plots of the model
parameters, which provide useful visual aids for convergence diagnostics.

Interacting with Stan: rstan

To interface R to Stan, users need to install the rstan package (Guo et al., 2015).
The rstan package allows users to call Stan from within R and pass the model specification,
data, and starting values to Stan using the stan() function. The MCMC samples from the
posterior distribution generated by Stan are then returned and can be further processed in
R.

There are a few differences between WinBUGS/JAGS and Stan that are worth noting
when specifying Stan models. While JAGS and WinBUGS simply interpret the commands
given in the model, Stan compiles the model specification to a C++ program. Consequently,
Stan differentiates between a number of different variable types, and variables in a model
need to be declared before they can be manipulated. Moreover, model code in Stan is
split into a number of blocks, such as “data” and “model”, each of which serves a specific
purpose. Finally, unlike in WinBUGS and JAGS, the order of statements in a Stan model
matters and statements cannot be interchanged with complete liberty.

To run the R code for the linear regression example in Stan, begin by loading the
rstan package:

# load rstan package
library(rstan)

The mydata, myinits, and myparameters are created in R as illustrated before. However,
as Stan relies on a somewhat different syntax than WinBUGS and JAGS, we need to rewrite
the model file so it can be parsed by Stan. Here we chose to specify the Stan model as a
vector string in R and pass it directly to Stan’s sampling function. Note, however, that we
could get the same result by simply saving the code as, say, linreg_model.stan.
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# specify Stan model as a string vector
linreg_model <- "dataf{

int<lower=1> N;

vector [N] X;

vector [N] Vs

}
parameters{
vector[2] beta;
real<lower=0> sigma2;
}

transformed parameters{
real<lower=0> tau;
tau <- pow(sigma2, -1);

real<lower=0> sigma;
sigma <- pow(sigma2, 0.5);

}

modelq{
// prior definitions
betal[l] ~ normal(0, sqrt(1000)); // Eq. 4
betal[2] ~ normal(0, sqrt(1000)); // Eq. 5
// inverse gamma prior for the variance
sigma2 ~ inv_gamma(0.001, 0.001) // Eq. 6
// linear regression
for(i in 1:N){ // Eq. 3

y[i] ~ normal(beta[1] + betal[2] * x[i], sigma); // Egs. 1-2

}

}n

There are a number of very obvious ways in which this model specification differs from that
in WinBUGS and JAGS. The model code is split into four blocks and all variables that
are mentioned in the “model” block are defined in the preceding blocks. The “data” block
contains the definition of all observed data that are provided by the user. The “parameters”
block contains the definition of all stochastic variables, and the “transformed parameters”
block contains the definition of all transformations of the stochastic variables. The difference
between these latter two parts of the code is rather subtle and has to do with the number
of times each variable is evaluated during the MCMC sampling process; a more elaborate
explanation can be found in the Stan reference manual (Stan Development Team, 2015).
We will not discuss the specifics of all the variable definitions here (see Stan Devel-
opment Team, 2015, for details) but will rather illustrate a few important points using as
example the tau variable. As in the model specification for WinBUGS and JAGS, tau is the
precision of the Gaussian distribution. Defining a variable for the precision of the Gaussian
is, strictly speaking, not necessary because distribution functions in Stan are parameterized
in terms of their standard deviation. Nevertheless, we retain tau for easy comparability
of the Stan MCMC samples with the output of WinBUGS or JAGS. The first line of the
definition of tau states that it is a real number that is not smaller than 0, and Stan will
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return an error message should it encounter a negative value for tau during the sampling
process. The next line states that tau is the inverse of the variance of the Gaussian. If we
were to reverse the order of these last two lines, due to Stan’s line-by—line evaluation of the
code, we would get an error message stating that the variable tau is not defined.

The specification of the actual sampling statements in the “model” block begins, in
line with Stan’s line-by-line evaluation style, with the prior distributions for the regression
coefficients beta[1] and beta[2] and the variance of the Gaussian. Note that the prior
for sigma?2 is an inverse gamma distribution—this is equivalent to the prior specification
in the WinBUGS/JAGS model where the inverse of the variance was given a gamma prior.
Finally, we summarized equations 1 and 2 into a single line, which is another way in which
the Stan model specification differs from the WinBUGS /JAGS code. While WinBUGS does
not allow users to nest statements within the definition of a stochastic node, Stan (and also
JAGS) users can directly specify the mean of the Gaussian to be a function of the regression
coefficients and observed data x, without needing to define mu[i].

To sample from the posterior distribution of the parameters, call the stan() function:

# call Stan

samples <- stan(data = mydata, init
model_code = linreg_model,
chains = 3, iter = 1000, warmup

myinits, pars = myparameters,

500, thin = 1)

The stan() function takes as input the following arguments:

- data specifies the list object that contains the data.

- init specifies the list object that contains the initial values.

- pars specifies the vector that lists the names of the parameters of interest.

- model_code specifies the string vector that contains the model specification. Alterna-
tively, the name of a .stan file that contains the model specification can be passed to
Stan using the file argument.

- chains specifies the number of MCMC chains.

- iter specifies the total number of samples per chain.

- warmup specifies the number of samples per chain that will be discarded at the beginning
of the sampling run.

- thin specifies the degree of thinning.

For more details on the use of stan(), we refer readers to the corresponding R help file.

Once sampling is finished, Stan returns the posterior samples to R in the samples
object. The results of the sampling run can be accessed, visualized, and summarized using
the following code:

# display the first 15 samples for tau
extract (samples, pars="tau", inc_warmup=F)$tau[1:15]

The posterior samples in the samples object can most easily be accessed using the
extract () function, which takes as input arguments:
- samples object containing the posterior samples from Stan.
- pars character vector with the names of the parameters for which the posterior samples
should be accessed.
- inc_warmup logical value indicating whether warm—up samples should be extracted too.

21
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# plot a histogram of the posterior distribution of tau
hist(extract(samples, pars="tau")$tau)

# display summary statistics of the posterior distributions
print (samples)

# plot traceplot; press ENTER for page change

traceplot (samples)

The posterior samples for betal[1], beta[2], and tau can be visualized and summa-
rized using the hist() and print() functions, respectively. As the name suggests, the
traceplot (samples) command displays trace plots of the model parameters, which pro-
vide useful visual aids for convergence diagnostics.

Example: Multinomial Processing Tree for Modeling False-Memory Data

In this section, we illustrate the use of WinBUGS, JAGS, and Stan for Bayesian
parameter estimation in the context of multinomial processing trees, popular cognitive
models for the analysis of categorical data. As an example, we will use data reported
in Wagenaar and Boer (1987). The data result from an experiment in which misleading
information was given to participants who were asked to recall details of a studied event.
The data were previously revisited by Vandekerckhove, Matzke, and Wagenmakers (2015),
and our discussion of Wagenaar and Boer’s experiment and their three possible models of the
effect of misleading postevent information on memory closely follows that of Vandekerckhove
et al..

The experiment proceeded in four phases. Participants were first shown a sequence of
drawings involving a pedestrian—car collision. In one particular drawing, a car was shown
at an intersection where a traffic light was either red, yellow, or green. In the second phase,
participants were asked questions about the narrative, such as whether they remembered
a pedestrian crossing the road as the car approached the “traffic light” (in the consistent-
information condition), the “stop sign” (in the inconsistent-information condition) or the
“intersection” (the neutral group). In the third phase, participants were given a recognition
test. They were shown pairs of pictures from Phase I, where one of the pair had been
slightly altered (e.g., the traffic light had been replaced by a stop sign), and asked to pick
out the unaltered version. In the final phase, participants were informed that there had
indeed been a traffic light, and were then asked to recall the color of the light.

The data consist of the frequency with which participants’ responses fall into each
of the four response categories, where each response category is characterized by a distinct
response pattern: both Phase III and Phase IV answers are correct (Correct—Correct),
Phase III answer is correct but Phase IV answer is incorrect (Correct-Incorrect), Phase III
answer is incorrect but Phase IV answer is correct (Incorrect—Correct), and both Phase III
and Phase IV answers are incorrect (Incorrect-Incorrect). The data from the Wagenaar and
Boer (1987) experiment are shown in Figure 5; the figure shows the frequency of participants
in each of the four response categories in the consistent, inconsistent, and neutral conditions.

The first theoretical account on the effect of misleading postevent information is Lof-
tus’ destructive—updating model. This model predicts that when conflicting information is
presented, it replaces and destroys the original information. Second is the coezistence model,
under which the initial memory is suppressed by an inhibition mechanism. However, the
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suppression is temporary and can revert. The third model is the no—conflict model, under
which misleading postevent information cannot replace or suppress existing information,
so that it only has an effect if the original information is somehow missing (i.e., was not
encoded or is forgotten).

Multinomial Processing Tree Models

The three theoretical accounts can be cast as multinomial processing tree models
(MPT), which translate a decision tree like the one in Figure 4 into a multinomial distribu-
tion (Batchelder & Riefer, 1980; Chechile, 1973; Riefer & Batchelder, 1988). Figure 4 shows
the tree associated with the no—conflict model. In Phase I of the experiment, the presence
of the traffic light is correctly stored with probability p. If this phase is successful, the color
is encoded next, with success probability c¢. In Phase II, the false presence of the stop sign
is stored with probability ¢q. In Phase III, the answer is either known or guessed correctly
with probability 1/2, and in Phase IV the answer is either known or guessed correctly with
probability 1/3.

To calculate the probability of the four possible response patterns (i.e., correct vs.
error in Phase III and correct vs. error in Phase IV), we add together the probabilities
of each branch leading to that response pattern. The probability of each branch being
traversed is given by the product of the individual probabilities encountered on the path.
For example, under the no—conflict model, the probability (and hence, expected proportion)
of getting Phase III correct but Phase IV wrong is (adding the paths in Figure 4 from left to
right and starting at the bottom from those cases where Phase III was correct but Phase IV
wasnot): 2 xgx (1—c)xp+23x(1—¢)x(1—c)xp+32xix(1-gq) x(1-p).

The two competing models both add one parameter to the no—conflict model. In
the case of the destructive—updating model, we add one parameter d for the probability
that the traffic light information is destroyed upon encoding the stop sign. In the case of
the coexistence model, we instead add one parameter s for the probability that the stop
stgn encoding causes the traffic light information to be suppressed, not destroyed, so that it
remains available in Phase IV.

Here we focus on the no—conflict model, but implementing the other models would
involve only small changes to our code. The generative specification of the no—conflict model
for the consistent (cons), inconsistent (inco) and neutral (neut) conditions is as follows:

cons ~ M(0.), N1) (7)
inco ~ M(0(27.), Nz) (8)
neut ~ M(f3,.), N3), 9)

where M denotes that the data follow a multinomial distribution and IV refers to the number
of participants in the n**, n = 1,2, 3, condition. The 3 x 4 matrix # contains the category
probabilities of the multinomial distributions in the three conditions, where 6, .) refers to
the n'" row of 6. For each condition, the four category probabilities are expressed in terms
of the three model parameters p, ¢, and c. As shown in Figure 4, the category probabilities
map onto the the four response categories and the corresponding response patterns, and
are obtained by following the paths in the tree representation of the model. In particular,
the category probabilities in the three conditions are given by:

23
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Figure 4. Multinomial processing tree representation of the inconsistent condition accord-
ing to the no—conflict model (adapted from Wagenaar & Boer, 1987). The probability of
each of the four response patterns (i.e., correct vs. error in Phase III and correct vs. error
in Phase IV) is given by adding the probabilities of each branch leading to that data re-
sponse pattern. The probability of each branch is given by the product of the individual
probabilities encountered on the path.

01y = (L+p+q—pg+dpc)/6 (10)
012 = (L+p+q—pg—2pc)/3 (11)
0a3 = (1—-p—q+pq)/6 (12)
04 = (1-p—q+pq)/3 (13)
021y = (L+p—q+pg+dpc)/6 (14)
0220 = (L+p—q+pg—2pc)/3 (15)
023 = (I—p+q—pqg)/6 (16)
04y = (I1—p+q—pq)/3 (17)
O31) = (1+p+4pc)/6 (18)
0320 = (1+p—2pc)/3 (19)
033 = (1-p)/6 (20)
O34 = (1-p)/3 (21)

Finally, our priors are flat beta distributions B(1,1); these distributions imply equal prior
probability for all values between 0 and 1 (i.e., B(1,1) is the same as a standard uniform
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Figure 5. The data from the Wagenaar and Boer (1987) experiment. Correct—Correct:
Both Phase III and Phase IV answers are correct; Correct—Incorrect: Phase III answer is
correct but Phase IV answer is incorrect; Incorrect—Correct: Phase III answer is incorrect
but Phase IV answer is correct; Incorrect—Incorrect: Both Phase III and Phase IV answers
are incorrect. The data are grouped by condition.

distribution):
p ~ B(L1) (22)
¢ ~ B(1,1) (24)

We will now fit the no—conflict model to the Wagenaar and Boer (1987) data using
WinBUGS, JAGS and Stan in combination with both MATLAB and R. Obtaining param-
eter estimates for the destructive—updating and the coexistence models requires only minor
modifications to the code. In particular, we would have to modify the category probabilities
(Equations 10-21) to reflect the tree architecture of the alternative models and define an
additional parameter (i.e., parameter d for the destructive—updating and parameter s for
the coexistence model) with the corresponding uniform prior distribution. As an illustra-
tion, the Supplemental Material presents the WinBUGS, JAGS and Stan model files and
the corresponding R code that allows users to estimate the parameters of the no—conflict
as well as the destructive—updating and coexistence models.

Working from R using R2WinBUGS

The WinBUGS code for the generative specification of the no—conflict model is given
below. Note here that since the generative model specification is just a list of declarative
statements, the order of statements does not matter for the specification. We write the
statements here in the order in which they appear in the text. This intentionally violates
the usual “programmer logic” in which variables need to be declared before they are used.
We emphasize that such restriction is not needed in WinBUGS code.

25
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model {

# ---- Data ===

cons[1:4] ~ dmulti(thetal[1,1:4], N[1])
inco[1:4] ~ dmulti(thetal2,1:4], N[2])
neut[1:4] ~ dmulti(thetal[3,1:4], N[3])

# -——-- Consistent condition

thetal[l1,1] <- (1 +p+qgq-pqg+4*xpc) /6
thetal[1,2] <- (1 +p+9g-pg-2*pc) /3
thetal[1,3] <- (1 -p-q+pqg) /6
thetal[1,4] <- (1 -p-gq+pq) /3

# —--—- Inconsistent condition

thetal[2,1] <- (1 + p-q+pqg+4*pc) /6
thetal[2,2] <- (1 +p-qgq+pqg-2%*pc) /3
thetal[2,3] <- (1 -p+q-pq) /6
thetal[2,4] <- (1 -p+qgq-pq) /3

# --—- Neutral condition------—-———----"--—-————————————————
theta[3,1] <- (1 +p+4 *xpc) / 6
theta[3,2] <- (1 +p -2 x*pc) / 3
thetal[3,3] <- (1 -p) / 6

theta[3,4] <- (1 -p) / 3

# ---- Priors -----—-—————"-"—"""""""""""""""""""""77°-"-""-"——
p ~ dbeta(l,1)

q ~ dbeta(1,1)

c ~ dbeta(1,1)

# -——- Some useful transformations

PQ <-p*gq

pc <-p *xc

26

Once the model specification is saved to a text file (e.g., noconflict.txt), the fol-
lowing R code can be used to create the data and the initial values, and call WinBUGS

using the R2WinBUGS package:

# load R2WinBUGS package
library (R2WinBUGS)

# create the data

cons <- c( 78, 70, 7, 15)
inco <- c(102, 55, 40, 53)
neut <- c( 63, 45, 13, 21)
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N <- c(170, 250, 142)
mydata <- list("cons", "inco", "neut", "N")

# create the initial values
myinits <- function(){

list(p=runif (1), g=runif(l), c=runif(1))
}

# specify the parameters of interest
myparameters <- C("p", nqn, "C")

# call WinBUGS
samples <- bugs(data=mydata, inits=myinits, parameters=myparameters,
model.file="noconflict.txt",
n.chains=3, n.iter=3500, n.burnin=500, n.thin=5,
DIC=FALSE, bugs.directory="C:/WinBUGS14",
codaPkg=FALSE, debug=TRUE)

Note that we ran 3500 iterations per chain (n.iter=3500) and retained only every 5"
sample (n.thin=5). As the parameters in cognitive models are often strongly correlated,
it is typically necessary to run relatively long MCMC chains and thin the chains to reduce
auto—correlation. When the sampling run has finished, WinBUGS returns the posterior
samples for the three model parameters in the samples object. The posterior distribution of
the parameters—plotted using the sampled values—is shown in the first column of Figure 6.

Posterior distributions Posterior distributions Posterior distributions
from WinBUGS from JAGS from Stan

cawo

Density
Density
Density

r T T T T 1 r T T T T 1 r T T T T 1
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
MPT parameters MPT parameters MPT parameters

Figure 6. The posterior distribution of the parameters of the no—conflict MPT model
obtained from WinBUGS, JAGS, and Stan in combination with R. The solid, dashed, and
dotted lines show the posterior distribution of the p, ¢, and ¢ parameters, respectively.

Working from R using R2jags

The JAGS code for the generative specification of the no—conflict model is identical
to the WinBUGS code presented in the previous section, and so is the R code for creating
the data and generating the initial values. Once the R2jags package is loaded by typing
library(R2jags), the following R code can be used to call JAGS and sample from the
posterior distribution of the parameters:

27
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samples <- jags(data=mydata,inits=myinits,parameters.to.save=myparameters,
model.file ="noconflict.txt",
n.chains=3, n.iter=3500, n.burnin=500, n.thin=5, DIC=FALSE)

JAGS returns the posterior samples for the three model parameters in the samples object.
The posterior distribution of the parameters is shown in the second column of Figure 6.
The posteriors obtained with JAGS are essentially indistinguishable from the ones obtained
with WinBUGS.

Working from R using rstan

The Stan code for the non—conflict model again differs somewhat from the Win-
BUGS/JAGS code:

data{
int comns[4];
int inco[4];
int neut[4];

¥

parametersq{
real<lower=0,upper=1> p;
real<lower=0,upper=1> q;
real<lower=0,upper=1> c;

b

transformed parameters{
real<lower=0,upper=1> pq;
real<lower=0,upper=1> pc;
simplex[4] thetal;
simplex[4] theta2;
simplex[4] theta3;

Pq <- p * q;
pc <- p * c;

// consistent condition

thetal[1] <- (1 + p+q-pq+4 *xpc) / 6; // Eq. 10
thetal[2] <- (1 +p+qg-pg-2=*pc) /3; // Eq. 11
thetal[3] <- (1 - p-q+pq) / 6; // Eq. 12
thetal[4] <- (1 - p-q+7pq) / 3; // Eq. 13
// inconsistent condition

theta2[1] <- (1 + p-q+pg+4 *xpc) / 6; // Eq. 14
theta2[2] <- (1 +p-q+pg -2 *pc) /3; // Eq. 15
theta2[3] <- (1 -p+q-pq) / 6; // Eq. 16
theta2[4] <- (1 -p+q-pq) / 3; // Eq. 17

// neutral condition
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theta3[1] <- (1 + p +4 * pc ) / 6; // Eq. 18
theta3[2] <- (1 +p -2 * pc ) / 3; // Eq. 19
theta3[3] <- (1 -p) / 6; // Eq. 20
theta3[4] <- (1 -p ) / 3; // Eq. 21
}
model{
// priors
p ~ beta(l,1); // Eq. 22
q ~ beta(1,1); // Eq. 23
c ~ beta(1,1); // Eq. 24
cons ~ multinomial(thetal); // Eq. 7
inco ~ multinomial (theta?2); // Eq. 8
neut ~ multinomial(theta3); // Eq. 9
}

Once the model specification is saved as noconflict.stan, the rstan package has
been loaded by typing library(rstan), and R objects have been created that contain the
data, initial values, and parameters of interest, the following code can be used to obtain
samples from the posterior distributions of the parameters:

samples <- stan(data = mydata, init = myinits, pars = myparameters,
file = ’noconflict.stan’,
chains = 3, iter = 3500, warmup = 500, thin

5)

The posterior samples for the three model parameters are returned in the samples object.
The third column of Figure 6 shows estimates of the posterior densities based on the sampled
values; the posteriors closely resemble those obtained with WinBUGS and JAGS.

Working from MATLAB using Trinity

The code to fit the no—conflict model from MATLAB using Trinity is again very
formulaic, and differs very little between the three computational engines. In the bare—
bones script automatically generated by trinity new, we first enter the data:

cons =[ 78, 70, 7, 151 ;
inco = [ 102, 55, 40, 531 ;
[ 63, 45, 13, 211 ;
N = [sum(cons) sum(inco) sum(neut)];

neut

After the data are entered, the model definition needs to be provided as a cell string.
We omit the model specification here because both the WinBUGS/JAGS and Stan versions
are fully given in the previous sections.

Next, we list the parameters of interest in a cell variable:

parameters = {
7c7 JpJ 7q7
3

29
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and we write a function that generates a structure containing one random value for each
parameter in a field:

generator = @()struct(...
’c’, rand,
’p’, rand,
’q’, rand

);

We also enter the data into a structure where we match the names of the fields to the
variable names in the model definition:

data = struct(...
’cons’, comns,
’inco’, inco,
’neut’, neut,
’N? , N
);

After selecting an engine, the callbayes function is called with mostly default settings:

%% Run Trinity with the CALLBAYES() function

tic
[stats, chains, diagnostics, info] = callbayes(engine,

’model’ , model ,
’data’ , data ,
’outputname’ , ’samples’ ,
’init’ , generator ,
’modelfilename’ , proj_id ,
’datafilename’ , proj_id ,
’initfilename’ , proj_id ,
’scriptfilename’ , proj_id ,
’logfilename’ s proj_id ,
’nchains’ s 4
’nburnin’ s led4
’nsamples’ s led
’monitorparams’ , parameters ,
’thin’ s 5 ,
’refresh’ s 1000 ,
’workingdir’ , [’/tmp/’ proj_id]l ,
’verbosity’ s o ,
’saveoutput’ , true ,
’parallel’ , disunix() ,
"modules’ , {’dic’} );

The engine will return, among others, the chains variable containing posterior sam-
ples for all three parameters of interest. We can inspect the results, and we can use the
codatable function to give qualitative feedback about the convergence of the MC chains:
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if any(codatable(chains, @gelmanrubin) > 1.1)
grtable(chains, 1.1)
warning(’Some chains were not converged!’)
else
disp(’Convergence looks good.’)
end

Finally, we can inspect the posterior means by chain using the stats structure:

disp(’Posterior means by chain:’)
disp(stats.mean)

as well as check some basic descriptive statistics averaged over all chains:

disp(’Descriptive statistics for all chains:’)
codatable(chains)

and visually inspect the posterior distributions using the smhist function:
smhist (chains, ’"c$l7q$l p$’);

where the regular expression may be read as “match only variables whose name is exactly
c or exactly q or exactly p”. The output of the last command—the posterior distribution
of the parameters—is shown in Figure 7.
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Figure 7. The posterior distribution of the parameters of the no—conflict MPT model ob-
tained from JAGS in combination with Trinity.

Testing hypotheses. After the posterior samples have been drawn, and posterior
distributions possibly visualized as above, there remains the issue of testing hypotheses
relating to parameters. With the current false-memory data set, one hypothesis of interest
might be that the probability p of encoding the traffic light is greater (versus lower) than
chance (Hypothesis 1). The same question might be asked of the probability ¢ of encoding
the light color (Hypothesis 2).

Given samples from the posterior, a convenient way of computing the posterior prob-
ability that a hypothesis is true is by computing the proportion of posterior samples in
which the hypothesis holds. To test Hypothesis 1, we would calculate the proportion of
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cases in which p > 0.5. To test Hypothesis 2, we calculate the proportion of cases in which
c>0.5.

The codatable command is useful in this regard. Custom statistics on the posterior
samples can be computed by providing anonymous functions as secondary input variables.
A quick way of counting the proportion of cases in which a condition is true is to make use
of the fact that MATLAB represents logically true statements as 1 and false statements
as 0. Hence, the anonymous function @(x)mean(x>.5) will return the proportion of cases
where the input is greater than 0.5:

>> codatable(chains, ’~c$|"p$’, Cmean, @(x)mean(x>.5))

Estimand mean @(x)mean(x>.5)
C 0.558 0.8441
P 0.4956 0.4547

As it turns out, the probability of Hypothesis 1 given the data is about 84% and that of
Hypothesis 2 is about 45%. In other words, neither of the hypotheses is strongly supported
by the data. In fact, as Figure 7 shows, most of the posterior mass is clustered near 0.5 for
all parameters.

Conclusion

Bayesian methods are rapidly rising from obscurity and into the mainstream of psy-
chological science. While Bayesian equivalents of many standard analyses, such as the ¢
test and linear regression, can be conducted in off-the-shelf software such as JASP (Love
et al., 2015), custom models will continue to require a flexible programming framework
and, unavoidably, some degree of software MacGyverism. To implement specialized mod-
els, researchers may write their own MCMC samplers, a process that is time—consuming
and labor—intensive, and does not come easy to investigators untrained in computational
methods. Luckily, general-purpose MCMC engines—such as WinBUGS, JAGS, and Stan—
provide easy—to—use alternatives to custom MCMC samplers. These software packages hit
the sweet spot for most psychologists; they provide a large degree of flexibility at a relatively
low time cost.

In this tutorial, we demonstrated the use of three popular Bayesian software packages
in conjunction with two scientific programming languages, R and MATLAB. This combi-
nation allows researchers to implement custom Bayesian analyses from already familiar
environments. As we illustrated, models as common as a linear regression can be easily
implemented in this framework, but so can more complex models, such as multinomial
processing trees (MPT; Batchelder & Riefer, 1980; Chechile, 1973; Riefer & Batchelder,
1988).

Although the tutorial focused exclusively on non—hierarchical models, the packages
may also be used for modeling hierarchical data structures (e.g, Lee, 2011). In hierarchical
modeling, rather than estimating parameters separately for each unit (e.g., participant), we
model the between—unit variability of the parameters with group—level distributions. The
group—level distributions are used as priors to “shrink” extreme and poorly constrained es-
timates to more moderate values. Hierarchical estimation can provide more precise and less
variable estimates than non-hierarchical estimation, especially in data sets with relatively
few observations per unit (Farrell & Ludwig, 2008; Rouder, Lu, Speckman, Sun, & Jiang,
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2005). Hierarchical modeling is rapidly gaining popularity in psychology, largely by virtue
of to the availability of accessible MCMC packages. The WinBUGS, JAGS, and Stan imple-
mentation of most hierarchical extensions is very straightforward and often does not require
more than a few additional lines of code. For the hierarchical WinBUGS implementation
of regression models, the reader is referred to Gelman and Hill (2007). For the hierarchical
implementation of custom models, such as multinomial processing trees, signal detection,
or various response time models, the reader is referred to Lee and Wagenmakers (2013),
Matzke, Dolan, Batchelder, and Wagenmakers (2015), Matzke and Wagenmakers (2009),
Nilsson, Rieskamp, and Wagenmakers (2011), Rouder, Lu, Morey, Sun, and Speckman
(2008) and Vandekerckhove, Tuerlinckx, and Lee (2011).

Although the goal of our tutorial was to demonstrate the use of general-purpose
MCMC software for Bayesian parameter estimation, our MPT—example has also touched
on Bayesian hypothesis testing. Various other Bayesian methods are available that rely
on MCMC-output to test hypotheses and formally compare the relative predictive perfor-
mance of competing models. For instance, Wagenmakers, Lodewyckx, Kuriyal, and Gras-
man (2010) and Wetzels, Raaijmakers, Jakab, and Wagenmakers (2009) discuss the use of
the Savage—Dickey density ratio, a simple procedure that enables researchers to compute
Bayes factors (Jeffreys, 1961; Kass & Raftery, 1995) for nested model comparison using the
height of the prior and posterior distributions obtained from WinBUGS. Vandekerckhove
et al. (2015) shows how to use posterior distributions obtained from WinBUGS and JAGS
to compute Bayes factors for non—nested MPTs using importance sampling. Lodewyckx
et al. (2011) outline a WinBUGS implementation of the product—space method, a transdi-
mensional MCMC approach for computing Bayes factors for nested and non—nested models.
Most recently, Gronau et al. (2017) provide a tutorial on bridge sampling—a new, poten-
tially very powerful method that is under active development. It is important to note,
however, that these methods are almost all quite difficult to use and can be unstable, espe-
cially for high-dimensional problems.

Throughout the tutorial, we have advocated WinBUGS, JAGS, and Stan as flexi-
ble and user-friendly alternatives to homegrown sampling routines. Although the MCMC
samplers implemented in these packages work well for the majority of models used in psy-
chology, they may be inefficient and impractical for some. For instance, models of choice
and response times, such as the linear ballistic accumulator (Brown & Heathcote, 2008)
or the lognormal race (Rouder, Province, Morey, Gomez, & Heathcote, 2015), are notori-
ously difficult to sample from using standard MCMC software. In these cases, custom-made
MCMC routines may be the only solution. For examples of custom-made and non—standard
MCMC samplers, the reader is referred to Rouder and Lu (2005) and Turner, Sederberg,
Brown, and Steyvers (2013), respectively.

Their general usefulness notwithstanding, the three packages all have their own set
of limitations and weaknesses. WinBUGS, as the name suggests, was developed specifically
for Windows operating systems. Although it is possible to run WinBUGS under OS X
and Linux using emulators such as Darwine and CrossOver or compatibility layers such
as Wine, user experience is often jarring. Even under Windows, software installation is a
circuitous process and requires users to decode a registration key and an upgrade patch
via the GUIL Once installed, users typically find the GUI inflexible and labor—intensive.
In interaction with R, user experience is typically more positive. Complaints focus mostly
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on WinBUGS’ cryptic error messages and the limited number of built—in functions and
distributions. Although the WinBUGS Development Interface (WBDev; Lunn, 2003) en-
ables users to implement custom—made functions and distributions, it requires experience
with Component Pascal and is poorly documented. Matzke, Dolan, Logan, Brown, and
Wagenmakers (2013) provide WBDev scripts for the truncated—normal and ex—Gaussian
distributions; Wetzels, Lee, and Wagenmakers (2010) provide an excellent WBDev tutorial
for psychologists, including a WBDev script for the shifted—Wald distribution. Importantly,
the BUGS Project has shifted development away from WinBUGS; development now focuses
on OpenBUGS (http://www.openbugs.net/w/FrontPage).

Stan comes equipped with interfaces to various programming languages, including R,
Python and MATLAB, and only requires the installation of the specific interface package,
which is easy and straightforward under most common operating systems. In terms of
computing time, Stan seems a particularly suitable choice for complex models with many
parameters and large posterior sample sizes. This advantage in computing time is due to
the fact that Stan compiles the sampling model to a C++ program before carrying out the
sampling process. The downside of this compilation step is that, particularly for small mod-
els as used in the present tutorial, compilation of the model might require more time than
the sampling process itself, in which case WinBUGS or JAGS seem a more advantageous
choice.

Finally, we will highlight two advantages of JAGS over Stan. First, as illustrated in
our example code, Stan code requires variable declaration and as a result can be somewhat
more complicated than JAGS code. Second, as a consequence of Stan’s highly efficient
Hamiltonian Monte Carlo sampling algorithm, some model specifications are not allowed—
in particular, Stan does not easily allow model specifications that require inference on
discrete parameters, which reduces its usefulness if the goal is model selection rather than
parameter estimation.

We demonstrated the use of three popular Bayesian software packages that enable
researchers to estimate parameters in a broad class of models that are commonly used in
psychological research. We focused on WinBUGS, JAGS, and Stan, and showed how they
can be interfaced from R and MATLAB. We hope that this tutorial can serve to further
lower the threshold to Bayesian modeling for psychological science.


http://www.openbugs.net/w/FrontPage
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